Advertisement

Journal of Chemical Sciences

, Volume 128, Issue 10, pp 1527–1536 | Cite as

Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding

  • P SHYAM VINOD KUMAR
  • V RAGHAVENDRA
  • V SUBRAMANIAN
Article

Abstract

In this perspective article, the basic theory and applications of the “Quantum Theory of Atoms in Molecules” have been presented with examples from different categories of weak and hydrogen bonded molecular systems.

Graphical Abstract

In this perspective article, the basic theory and applications of the “Quantum Theory of Atoms in Molecules” have been presented with examples from different categories of weak and hydrogen bonded molecular systems.

Keywords

QTAIM non-covalent interaction chemical bonding H-bonding electron density 

Notes

Acknowledgements

Authors would like to thank the Council of Scientific and Industrial Research (CSIR), New Delhi and Department of Science and Technology, India for the funding.

References

  1. 1.
    Bohórquez H J, Boyd R J and Matta C F 2011 J. Phys. Chem. A 115 12991CrossRefGoogle Scholar
  2. 2.
    (a) Bader R F W 1990 In Atoms in Molecules: A Quantum Theory (Oxford: Clarendon Press); (b) Bader R F W 1985 Acc. Chem. Res. 18 9; (c) Bader R F W 1991 Chem. Rev. 91 893Google Scholar
  3. 3.
    (a) Grabowski S J 2011 Chem. Rev. 111 2597; (b) Grabowski S J 2012 J. Phys. Chem. A 116 1838Google Scholar
  4. 4.
    Parthasarthi R, Subramanian V and Sathyamurthy N 2005 J. Phys. Chem. A 109 843CrossRefGoogle Scholar
  5. 5.
    (a) Arputharaj D S, Hathwar V R, Row T N G and Kumaradhas P 2012 Cryst. Growth Des. 12 4357; (b) Hathwar V R, Paul A V, Natarajan S and Row T N G 2011 J. Phys. Chem. A 115 12818; (c) Pavan M S, Pal R, Nagarajan K and Row T N G 2014 Cryst. Growth Des. 14 5477Google Scholar
  6. 6.
    Hirano Y, Takeda K and Miki K 2016 Nature 534 281Google Scholar
  7. 7.
    (a) Parthasarathi R, Amutha R, Subramanian V, Nair B U and Ramasami T 2004 J. Phys. Chem. A 108 3817; (b) Parthasarathi R and Subramanian V 2005 Struct. Chem. 16 243Google Scholar
  8. 8.
    Szabo A and Ostlund N S 1989 In Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (New York: Dover Publications)Google Scholar
  9. 9.
    Popelier P 2000 In Atoms in Molecules: An Introduction (New York: Prentice Hall)Google Scholar
  10. 10.
    (a) Brown E C, Bader R F W and Werstiuk N H 2009 J. Phys. Chem. A 113 3254; (b) Bone R G A and Bader R F W 1996 J. Phys. Chem. 100 10892Google Scholar
  11. 11.
    (a) Bader R F W 2009 J. Phys. Chem. A 113 10391; (b) Bader R F W 2010 J. Phys. Chem. A 114 7431Google Scholar
  12. 12.
    (a) Bader R F W and Essén H 1984 J. Chem. Phys. 80 1943; (b) Bader R F W and Matta C F 2001 Inorg. Chem. 40 5603Google Scholar
  13. 13.
    (a) Bader R F W and MacDougall P J 1985 J. Am. Chem. Soc. 107 6788; (d) Bader R F W and Fang D-C 2005 J. Chem. Theory Comput. 1 403Google Scholar
  14. 14.
    Chaudry U A and Popelier P L A 2004 J. Org. Chem. 69 233CrossRefGoogle Scholar
  15. 15.
    Devereux M and Popelier P L A 2007 J. Phys. Chem. A 111 1536CrossRefGoogle Scholar
  16. 16.
    Yuan Y, Mills M J L, Popelier P L A and Jensen F 2014 J. Phys. Chem. A 118 7876CrossRefGoogle Scholar
  17. 17.
    Griffiths M Z and Popelier P L A 2013 J. Chem. Inf. Model. 53 1714CrossRefGoogle Scholar
  18. 18.
    Green A J and Popelier P L A 2014 J. Chem. Inf. Model. 54 553CrossRefGoogle Scholar
  19. 19.
    Harding A P, Wedge D C and Popelier P L A 2009 J. Chem. Inf. Model. 49 1914CrossRefGoogle Scholar
  20. 20.
    Matta C F, Huang L and Massa L 2011 J. Phys. Chem. A 115 12451CrossRefGoogle Scholar
  21. 21.
    (a) Gadre S R and Pundlik S S 1995 J. Am. Chem. Soc. 117 9559; (b) Kumar R M, Elango M and Subramanian V 2010 J. Phys. Chem. A 114 4313Google Scholar
  22. 22.
    (a) Jemmis E D, Subramanian G, Shrivastava I H and Gadre S R 1994 J. Phys. Chem. 98 6445; (b) Rao J S, Zipse H and Sastry G N 2009 J. Phys. Chem. B 113 20Google Scholar
  23. 23.
    (a) Suresh C H, Koga N and Gadre S R 2000 Organometallics 19 3008; (b) Sharma B, Rao J S and Sastry G N 2011 J. Phys. Chem. A 115 1971Google Scholar
  24. 24.
    (a) Babu K, Ganesh V, Gadre S R and Ghermani N E 2004 Theor. Chem. Acc. 111 255; (b) Grabowski S J and Lipkowski P 2011 J. Phys. Chem. A 115 4765Google Scholar
  25. 25.
    Lipkowski P, Grabowski S J, Robinson T L and Leszczynski J 2004 J. Phys. Chem. A 108 10865CrossRefGoogle Scholar
  26. 26.
    Grabowski S J, Sokalski W A and Leszczynski J 2004 J. Phys. Chem. A 108 5823CrossRefGoogle Scholar
  27. 27.
    Espinosa E, Molins E and Lecomte C 1998 Chem. Phys. Lett. 285 170CrossRefGoogle Scholar
  28. 28.
    Espinosa E, Alkorta I, Elguero J and Molins E 2002 J. Chem. Phys. 117 5529CrossRefGoogle Scholar
  29. 29.
    Grabowski S J 2001 J. Phys. Chem. A 105 10739CrossRefGoogle Scholar
  30. 30.
    Parthasarathi R and Subramanian V 2006 In Hydrogen Bonding-New Insights S J Grabowski (Ed.) (New York: Springer) p.34Google Scholar
  31. 31.
    Popelier P L A 2008 Book Review‘Molecular Aggregation. 19th IUCr Monograph on Crystallography’ by A Gavezzotti Crystallogr. Rev. 14 81CrossRefGoogle Scholar
  32. 32.
    Matta C F and Boyd R J 2007 In The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design (Weinheim: Wiley-VCH)Google Scholar
  33. 33.
    Bader R F W, Johnson S, Tang H T and Popelier P L A 1996 J. Phys. Chem. 100 15398CrossRefGoogle Scholar
  34. 34.
    Fradera X, Austen A M and Bader R F W 1999 J. Phys. Chem. A 103 304CrossRefGoogle Scholar
  35. 35.
    Ziolkowski M, Grabowski S J and Leszczynski J 2006 J. Phys. Chem. A 110 6514CrossRefGoogle Scholar
  36. 36.
    Matta C F 2006 In Hydrogen Bonding – New Insights S J Grabowski (Ed.) (New York: Springer) Ch. 9Google Scholar
  37. 37.
    Grabowski S J 2006 In Hydrogen Bonding – New Insights (New York: Springer)Google Scholar
  38. 38.
    Popelier P L A 1998 J. Phys. Chem. A 102 1873CrossRefGoogle Scholar
  39. 39.
    Koch U and Popelier P L A 1995 J. Phys. Chem. 99 9747CrossRefGoogle Scholar
  40. 40.
    Parthasarathi R, Subramanian V and Sathyamurthy N 2006 J. Phys. Chem. A 110 3349CrossRefGoogle Scholar
  41. 41.
    Møller C and Plesset M S 1934 Phys. Rev. 46 618CrossRefGoogle Scholar
  42. 42.
    Raghavachari K and Pople J A 1978 Int. J. Quantum Chem. 14 91CrossRefGoogle Scholar
  43. 43.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara K, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A, Gaussian 09, revision A.01 (Gaussian Inc.: Wallingford CT) (2004)Google Scholar
  44. 44.
    Biegler-Konig F, Schonbohm J, Derdau R, Bayles D and Bade R F W, AIM 2000 version 1 (Bielefeld Germany) (2000)Google Scholar
  45. 45.
    Lu T and Chen F 2012 J. Comp. Chem. 33 580CrossRefGoogle Scholar
  46. 46.
    Sinnokrot O M and Sherrill C D 2004 J. Am. Chem. Soc. 126 7690CrossRefGoogle Scholar
  47. 47.
    Sinnokrot O M and Sherrill C D 2006 J. Phys. Chem. A 110 10656CrossRefGoogle Scholar
  48. 48.
    Hobza P and Havlas Z 2000 Chem. Rev. 1 00 4253CrossRefGoogle Scholar
  49. 49.
    Pitonak M, Neogrady P, Rezac J, Jurecka P, Urban M and Hobza P 2008 J. Chem. Theory Comput. 4 1829CrossRefGoogle Scholar
  50. 50.
    Muller-Dethlefs K and Hobza P 2000 Chem. Rev. 100 143CrossRefGoogle Scholar
  51. 51.
    Selzle H L, Schlag E W and Hobza P 1996 J. Phys. Chem. 100 18790CrossRefGoogle Scholar
  52. 52.
    Mishra B K, Arey J S and Sathyamurthy N 2010 J. Phys. Chem. A 114 9606CrossRefGoogle Scholar
  53. 53.
    Hohenstein E G and Sherrill C D 2009 J. Phys. Chem. A 113 878CrossRefGoogle Scholar
  54. 54.
    Shuler K and Dykstra C E 2000 J. Phys. Chem. A 104 4562CrossRefGoogle Scholar
  55. 55.
    Parthasarathi R, Subramanian V and Sathyamurthy N 2007 J. Phys. Chem. A 111 13287CrossRefGoogle Scholar
  56. 56.
    Prakash M, Gopal Samy K and Subramanian V 2009 J. Phys. Chem. A 113 13845CrossRefGoogle Scholar
  57. 57.
    Bader R F W and Bayles D 2000 J. Phys. Chem. A 104 5579CrossRefGoogle Scholar
  58. 58.
    Mohan N and Suresh C H 2014 J. Phys. Chem. A 118 1697CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • P SHYAM VINOD KUMAR
    • 1
  • V RAGHAVENDRA
    • 1
  • V SUBRAMANIAN
    • 1
  1. 1.Chemical LaboratoryCSIR-Central Leather Research InstituteTamil NaduIndia

Personalised recommendations