Journal of Chemical Sciences

, Volume 128, Issue 10, pp 1651–1662 | Cite as

Role of Ti doping and Al and B vacancies in the dehydrogenation of Al(BH4)3

  • INDRANI CHOUDHURI
  • ARUP MAHATA
  • KUBER SINGH RAWAT
  • BISWARUP PATHAK
Article

Abstract

Metal borohydrides such as Al(BH4)3 is thermodynamically very stable but has weak dehydrogenation property. In contrast, Ti(BH4)3 has less stability (25°C) but excellent dehydrogenation property. Hence, we have studied Ti-doped aluminium borohydride systems in order to improve the dehydrogenation property. Our density functional studies (DOS and pDOS) show that Ti interacts more strongly with the BH4 unit and such strong interaction weakens the B-H bond and improves the dehydrogenation property. Ti-doped Al(BH4)3 system improves the overall stability due to the formation of a stronger Ti-B bond. Our study on defects in Al(BH4)3 suggests that B-defect system has the best dehydrogenation property compared to the pure and Ti-doped Al(BH4)3 systems.

Graphical Abstract

The H2 molecular dehydrogenation (Ed) energies are presented for Ti-doped Al(BH4)3, and systems with Al/B-defects in Ti-doped and Al(BH4)3.

Keywords

Borohydrides doping defects dehydrogenation hydrogen storage. 

Supplementary material

12039_2016_1148_MOESM1_ESM.docx (1.1 mb)
(DOCX 1.12 MB)

References

  1. 1.
    Chu S and Majumdar A 2012 Nature 488 294CrossRefGoogle Scholar
  2. 2.
    Dresselhaus M S and Thomas I L 2001 Nature 414 332CrossRefGoogle Scholar
  3. 3.
    Jena P 2011 J. Phys. Chem. Lett. 2 206CrossRefGoogle Scholar
  4. 4.
    Eberle U, Felderhoff M and Schüth F 2009 Angew. Chem. 48 6608CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Soloveichik G, Her J H, Stephenes P W, Gao Y, Rijssenbeek J, Andrus M and Zhao J C 2008 Inorg. Chem. 47 4290CrossRefGoogle Scholar
  7. 7.
    Kojima Y, Suzuki K, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y and Hayashi H 2002 Int. J. Hydrogen Energy 10 1029CrossRefGoogle Scholar
  8. 8.
    Hua D, Hanxi Y, Xinping A and Chuansin C 2003 Int. J. Hydrogen Energy 10 1095CrossRefGoogle Scholar
  9. 9.
    Kim J, Lee H, Han S, Kim H, Song M and Lee J 2004 Int. J. Hydrogen Energy 3 263CrossRefGoogle Scholar
  10. 10.
    Matsunaga T, Buchter F, Miwa K, Towata S, Orimo S and Zuttel A 2008 Renewable Energy 33 193CrossRefGoogle Scholar
  11. 11.
    Nakamori Y, Li H -W, Matsuo M, Miwa K, Towata S and Orimo S 2008 J. Phys. Chem. Solids 69 2292CrossRefGoogle Scholar
  12. 12.
    Ćerny R, Severa G, Ravnsbæk D B, Filinchuk Y, D’Anna V, Hagemann H, Haase D, Jensen C M and Jensen T R 2010 J. Phys. Chem. C 114 1357Google Scholar
  13. 13.
    Bardají E G, Zhao-Karger Z, Boucharat N, Nale A, Michiel J, Setten V, Lohstroh W, Róhm E, Catti M and Fichtner M 2011 J. Phys. Chem. C 115 6095CrossRefGoogle Scholar
  14. 14.
    Semenenko K N, Kravchenko O V and Lobkovskii E B 1972 J. Struct. Chem. 13 508CrossRefGoogle Scholar
  15. 15.
    Miwa K, Ohba N, Towata S, Nakamori Y, Zuttel A and Orimo S 2007 J. Alloys Compd. 446-447 310CrossRefGoogle Scholar
  16. 16.
    Ravnsbæk D, Sørensen L, Filinchuk Y, Bwsenbacher F and Jensen T 2012 Angew. Chem. 124 3642CrossRefGoogle Scholar
  17. 17.
    Nakamori Y, Miwa K, Ninomiya A, Ohba N, Towata S, Zuttel A and Orimo S 2006 Phys. Rev. B: Condens. Matter 74 45126CrossRefGoogle Scholar
  18. 18.
    Aldridge S, Blake A J, Downs A J, Gould R O, Parsons S and Pulham C R 1997 J. Chem. Soc. Dalton Trans. 6 1007CrossRefGoogle Scholar
  19. 19.
    Hoekstra H R and Katz J J 1949 J. Am. Chem. Soc. 71 2488CrossRefGoogle Scholar
  20. 20.
    Callini E, Borgschulte A, Hugelshofer C, Ramirez-Cuesta A and Züttel A 2014 J. Phys. Chem. C 118 77CrossRefGoogle Scholar
  21. 21.
    Yuan F, Gu Q, Chen X, Tan Y, Guo Y and Yu X 2012 Chem. Mater. 24 3370CrossRefGoogle Scholar
  22. 22.
    Chu H, Qiu S, Zou Y, Xiang C, Zhang H and Xu F 2015 J. Phys. Chem. C 119 913CrossRefGoogle Scholar
  23. 23.
    Zhang Z G, Wang H, Liu J W and Zhu M 2013 Thermochim. Acta 560 82CrossRefGoogle Scholar
  24. 24.
    Ding X -L, Yuan X, Jia C and Ma Z -F 2010 Int. J. Hydrogen Energy 35 11077CrossRefGoogle Scholar
  25. 25.
    Puszkiel J A and Gennari F C 2009 Scr. Mater. 60 667CrossRefGoogle Scholar
  26. 26.
    Patel N, Fernandes R and Miotello A 2010 J. Catal. 271 315CrossRefGoogle Scholar
  27. 27.
    Liu Y, Zhou J and Jena P 2015 J. Phys. Chem. C 119 11056CrossRefGoogle Scholar
  28. 28.
    Yu X B, Grant D M and Walker G S 2008 J. Phys. Chem. C 112 11059CrossRefGoogle Scholar
  29. 29.
    Pozzo M and Alfe D 2011 Int. J. Hydrogen Energy 36 15632CrossRefGoogle Scholar
  30. 30.
    Shi B, Song Y, Dai J H and Yu H Z 2012 J. Phys. Chem. C 116 12001CrossRefGoogle Scholar
  31. 31.
    Song Y, Dai J H, Li C G and Yang R 2009 J. Phys. Chem. C 113 10215CrossRefGoogle Scholar
  32. 32.
    Song Y, Dai J H, Li C G and Yang R 2010 Phys. Chem. Chem. Phys. 12 10942CrossRefGoogle Scholar
  33. 33.
    Chaudhuri S, Graetz J, Ignatov A, Reilly J J and Muckerman J T 2006 J. Am. Chem. Soc. 128 11404CrossRefGoogle Scholar
  34. 34.
    Liu X, McGrady G S, Langmi H W and Jensen C M 2009 J. Am. Chem. Soc. 131 5032CrossRefGoogle Scholar
  35. 35.
    Jensen C, Zidan R, Mariels N, Hee1 A and Hagen C 1999 Int. J. Hydrogen Energy 5 461Google Scholar
  36. 36.
    Li S, Jena P and Ahuja R 2006 Phys. Rev. B: Condens. Matter 73 214107CrossRefGoogle Scholar
  37. 37.
    Mao J, Guo Z, Nevirkovets I P, Liu H K and Dou S X 2012 J. Phys. Chem. C 116 1596CrossRefGoogle Scholar
  38. 38.
    Song Y, Guo Z X and Yang R 2004 Phys. Rev. B: Condens. Matter 69 094205CrossRefGoogle Scholar
  39. 39.
    Kresse G and Joubert D 1999 Phys. Rev. B: Condens. Matter 59 1758CrossRefGoogle Scholar
  40. 40.
    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B: Condens. Matter 46 6671CrossRefGoogle Scholar
  41. 41.
    Blochl P E 1994 Phys. Rev. B: Condens. Matter 50 17953CrossRefGoogle Scholar
  42. 42.
    Grimme S, Antony J, Ehrlich S and Krieg S 2010 J. Chem. Phys. 132 154104CrossRefGoogle Scholar
  43. 43.
    Monkhorst H J and Pack J D 1976 Phys. Rev. B: Condens. Matter 13 5188CrossRefGoogle Scholar
  44. 44.
    Ozolins V, Majzoub E H and Wolverton C 2009 J. Am. Chem. Soc. 131 230CrossRefGoogle Scholar
  45. 45.
    Larsson P, Moysés Araújo J C, Larsson A, Jena P and Ahuja R 2008 Proc. Natl. Acad. Sci. U.S.A 105 8227CrossRefGoogle Scholar
  46. 46.
    Wang K, Zhang J -G, Jiao J -S, Zhang T and Zhou Z -N 2014 J. Phys. Chem. C 118 8271CrossRefGoogle Scholar
  47. 47.
    Kresse G 2000 Phys. Rev. B: Condens. Matter 62 8295CrossRefGoogle Scholar
  48. 48.
    Bader R F W 1991 Chem. Rev. 91 893CrossRefGoogle Scholar
  49. 49.
    Henkelman G J, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354CrossRefGoogle Scholar
  50. 50.
    Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899CrossRefGoogle Scholar
  51. 51.
    Chibisov A N 2014 Comput. Mater. Sci. 82 131CrossRefGoogle Scholar
  52. 52.
    Du A J, Smith S C, Yao X D and Lu G Q 2007 J. Phys. Chem. C 111 12124CrossRefGoogle Scholar
  53. 53.
    Guo-ying Z, Gui-li L and Hui Z 2012 Trans. Nonferrous Met. Soc. China. 22 1717CrossRefGoogle Scholar
  54. 54.
    Zhang P, Xu B, Li X, Zeng Y and Meng L 2014 Int. J. Hydrogen Energy 39 17144CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • INDRANI CHOUDHURI
    • 1
  • ARUP MAHATA
    • 1
  • KUBER SINGH RAWAT
    • 1
  • BISWARUP PATHAK
    • 1
  1. 1.Discipline of Chemistry and Discipline of Metallurgy Engineering and Material ScienceIndian Institute of Technology (IIT) IndoreMadhya PradeshIndia

Personalised recommendations