Journal of Chemical Sciences

, Volume 128, Issue 1, pp 119–132 | Cite as

Effects of temperature and CO2 pressure on the emission of N,N-dialkylated perylene diimides in poly(alkyl methacrylate) films. Are guest-host alkyl group interactions important?

  • KIZHMURI P DIVYA
  • MICHAEL J BERTOCCHI
  • RICHARD G WEISS
Article

Abstract

Static and dynamic fluorescence measurements have been made on four N,N−dialkylated perylene diimides in films of poly(alkyl methacrylate)s (PAMAs) with 5 different alkyl groups and in a ‘model solvent’, n-butyl acetate, over wide temperature ranges. The results indicate that the excited singlet states of the perylene guest molecules are controlled primarily by chain relaxations rather than hole free volumes in the polymer matrixes. The short singlet lifetimes of the perylene molecules require that the guest molecules respond primarily to the environments experienced by their ground states within the PAMA matrixes; each of the PAMAs offers slightly different locations in which the guest molecules can reside as a result of interactions between the N−alkyl substituents on the imide groups of the perylenes and the alkyl groups on the PAMA side chains. PAMAs with branched side chains were found to have a larger influence than PAMAs with linear side chains on the fluorescence properties of the guest molecules. The results are compared to those employing pyrenyl derivatives (with much longer excited singlet lifetimes) in the same PAMA films. The overall results indicate that the perylenes can be used as a complementary probe of local polymer chain dynamics, but they are less sensitive to their environments than are pyrenyl groups. However, they offer some distinct advantages: (1) a much wider range of N,N−disubstituted perylene diimides can be synthesized easily; (2) those substituents can be designed to allow a greater or lesser interaction with an anisotropic host matrix. Also, rapid conformational changes of a bis-perylene derivative appear to be restricted in the polymer matrixes. Those restrictions appear reduced when the polymer films are placed under high pressures of the plasticizing gas, CO2, but not when they are under equal pressures of a much less intervening gas, N2.

Graphical Abstract

Experiments with four perylene diimide derivatives in five poly(alkyl methacrylate)s over wide temperature ranges and varying CO2 or N2 pressures indicate that fluorescence changes of the guest molecules are controlled primarily by chain relaxations rather than hole free volumes in the polymer matrixes.

Keywords

Perylene Diimides fluorescence conformational changes polymer matrixes excited singlet states 

Supplementary material

12039_2015_1009_MOESM1_ESM.docx (582 kb)
(DOCX 581 KB)

References

  1. 1.
    Icli S and Icil H 1994 Spectrosc. Lett. 27 323CrossRefGoogle Scholar
  2. 2.
    Icli H and Icli S 1995 Spectrosc. Lett. 28 595CrossRefGoogle Scholar
  3. 3.
    Würthner F 2004 Chem. Commun. 14 1564CrossRefGoogle Scholar
  4. 4.
    Wu H, Wang H, Xue L, Shi Y and Li X 2010 J. Phys. Chem. B 114 14420CrossRefGoogle Scholar
  5. 5.
    Hempel E, Huth H and Beiner M 2003 Thermochim. Acta 403 105CrossRefGoogle Scholar
  6. 6.
    Wind M, Graft R, Renker S and Spiess H W 2005 Macromol. Chem. Phys. 206 142CrossRefGoogle Scholar
  7. 7.
    McCrum N G, Read B E and Williams G 1976 In Anelastic and Dielectric Effects in Polymer Solids (Wiley: London)Google Scholar
  8. 8.
    Phillips P J 1990 Chem. Rev. 90 425CrossRefGoogle Scholar
  9. 9.
    Vigil M R, Bravo J, Atvars T D Z and Baselga J 1997 Macromolecules 30 4871CrossRefGoogle Scholar
  10. 10.
    Christoff M and Atvars T D Z 1999 Macromolecules 32 6093CrossRefGoogle Scholar
  11. 11.
    Christoff M, Yamaki S B, De Oliveira M G and Atvars T D Z 2004 J. Appl. Polym. Sci. 92 830CrossRefGoogle Scholar
  12. 12.
    Mendonca C R, Misoguti L, Andrade A A, Yamaki S B, Dias V D, Atvars T D Z and Oliveira Jr. O N 2007 Opt. Mater. 30 216CrossRefGoogle Scholar
  13. 13.
    Abraham S, Atvars T D Z and Weiss R G 2010 J. Phys. Chem. B 114 12221CrossRefGoogle Scholar
  14. 14.
    Atvars T D Z, Abraham S, Hill A J, Pas S J, Chesta C and Weiss R G 2013 Photochem. Photobiol. 89 1346CrossRefGoogle Scholar
  15. 15.
    Abraham S, Ghosh I, Nau W M, Chesta C, Pas S J, Hill A J and Weiss R G 2012 Photochem. Photobiol. Sci. 11 914CrossRefGoogle Scholar
  16. 16.
    Hinze G, Basche a T and Vallee R A L 2011 Phys. Chem. Chem. Phys. 13 1813CrossRefGoogle Scholar
  17. 17.
    Haase M, Hubner C G, Nolde F, Mullen K and Basche T 2011 Phys. Chem. Chem. Phys. 13 1776CrossRefGoogle Scholar
  18. 18.
    Kalyanasundaram K and Thomas J K 1977 J. Am. Chem. Soc. 99 2039CrossRefGoogle Scholar
  19. 19.
    Ananthapadmanabhan K P, Goddard E D, Turro N J and Kuo P L 1985 Langmuir 1 352CrossRefGoogle Scholar
  20. 20.
    Winnik F M 1993 Chem. Rev. 93 587CrossRefGoogle Scholar
  21. 21.
    Karpovich D S and Blanchard G J 1995 J. Phys. Chem. 99 3951CrossRefGoogle Scholar
  22. 22.
    Jing D P, Bokobza L, Monnerie L, Collart P and De Schryver F C 1990 Polymer 31 110CrossRefGoogle Scholar
  23. 23.
    Patel A B, Khumsupan P and Narayanaswami V 2010 Biochemistry 49 1766CrossRefGoogle Scholar
  24. 24.
    Valdes-Aguilera O, Pathak C P and Neckers D C 1990 Macromolecules 23 689CrossRefGoogle Scholar
  25. 25.
    Strukelj M, Martinho J M G, Winnik M A and Quirk R P 1991 Macromolecules 24 2488CrossRefGoogle Scholar
  26. 26.
    Vogel A I 1989 In Textbook of Practical Organic Chemistry 5th ed. (Longman Scientific & Technical: New York) p. 399Google Scholar
  27. 27.
    Rajaram S, Shivanna R, Kandappa S K and Narayan K S 2012 J. Phys. Chem. Lett. 3 2405CrossRefGoogle Scholar
  28. 28.
    Chellappan K V, Kandappa S K, Rajaram S and Narayan K S 2015 J. Phys. Chem. Lett. 6 224CrossRefGoogle Scholar
  29. 29.
    Valeur B 2001 In Molecular Fluorescence: Principles and Applications 1st ed. (Wiley-VCH: Weinheim) pp. 159-160Google Scholar
  30. 30.
    Lakowicz J R 2006 In Principles of Fluorescence Spectroscopy 3rd ed. (Springer, New York) pp. 54-55Google Scholar
  31. 31.
    Kubin R F and Fletcher A N 1982 J. Lumin. 27 455CrossRefGoogle Scholar
  32. 32.
    Yu T and Weiss R G 2012 Green Chem. 14 209CrossRefGoogle Scholar
  33. 33.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M J, Knox E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O J, Foresman B, Ortiz J V, Cioslowski J and Fox D J 2013 Gaussian 09, Revision D.01 (Gaussian, Inc.: Wallingford CT)Google Scholar
  34. 34.
    Wang W, Han J J, Wang L -Q, Li L -S, Shaw W J and Li A D Q 2003 Nano Lett. 3 455CrossRefGoogle Scholar
  35. 35.
    Xu L, Zhang Q B, Sun M, Hong L, Neoh K -G, Kang E -T and Fub G D 2013 J. Mater. Chem. A 1 1207CrossRefGoogle Scholar
  36. 36.
    Langhals H and Jona W 1998 Angew. Chem., Int. Ed. 37 952CrossRefGoogle Scholar
  37. 37.
    Holman M W, Yan P, Adams D M, Westenhoff S and Silva C 2005 J. Phys. Chem. A 109 8548CrossRefGoogle Scholar
  38. 38.
    Diehl F P, Roos C, Duymaz A, Lunkenheimer B, Köhn A and Basché T 2014 J. Phys. Chem. Lett. 5 262CrossRefGoogle Scholar
  39. 39.
    Bai S, Debnath S, Javid N, Frederix P W J M, Fleming S, Pappas C and Ulijn R V 2014 Langmuir 30 7576CrossRefGoogle Scholar
  40. 40.
    Dwivedi A K, Pandeeswar M and Govindaraju T 2014 ACS Appl. Mater. Interfaces 6 21369CrossRefGoogle Scholar
  41. 41.
    Ford W E and Kamat P V 1987 J. Phys. Chem. 91 6373CrossRefGoogle Scholar
  42. 42.
    Tang T, Peneva K, Mu1llen K and Webber S E 2007 J. Phys. Chem. A 111 10609Google Scholar
  43. 43.
    Duda J L and Zielinski J M 1996 Free-Volume Theory In Diffusion in Polymers P Neogi (Ed.) (Marcel Decker, Inc.: New York)Google Scholar
  44. 44.
    Kamiya Y, Mizoguchi K, Hirose T and Naito Y 1989 J. Polym. Sci. B: Polym. Phys. 27 879CrossRefGoogle Scholar
  45. 45.
    Kamiya Y, Mizoguchi K, Terada K, Fujiwara Y and Wang J -S 1998 Macromolecules 31 472CrossRefGoogle Scholar
  46. 46.
    Quach A and Simha R 1971 J. Appl. Phys. 42 4592CrossRefGoogle Scholar
  47. 47.
    Sauer J A 1977 Polym. Eng. Sci. 17 150CrossRefGoogle Scholar
  48. 48.
    Wang W -C, Kramer E J and Sachse W H 1982 J. Polym. Sci. Polym. Phys. Ed. 20 1371CrossRefGoogle Scholar
  49. 49.
    Kawai T 1961 J. Phys. Soc. Jpn. 16 1220CrossRefGoogle Scholar
  50. 50.
    Menissez C, Sixou B, David L and Vigier G 2005 J. Non-Cryst. Solids 351 595CrossRefGoogle Scholar
  51. 51.
    Fytas G 1989 Macromolecules 22 211CrossRefGoogle Scholar
  52. 52.
    Ngai K L, Gopalakrishnan T R and Beiner M 2006 Polymer 47 7222CrossRefGoogle Scholar
  53. 53.
    Becker-Guedes F, deAzevedo E R, Bonagamba T J and Schmidt-Rohr K 2004 Appl. Magn. Reson. 27 383CrossRefGoogle Scholar
  54. 54.
    Cyvin S J, Cyvin B N, Brunvoll J, Whitmer J C, Klaeboe P and J Gustavsen E Z 1979 Z. Naturforsch. A 34 876Google Scholar
  55. 55.
    Emmons E D, Kraus R G, Srividya S D, Thompson J S and Covington A M J. Polym. Sci., Part B: Polym. Phys. 45 358Google Scholar
  56. 56.
    Ihara H, Goto Y, Sakurai T, Takafuji M, Sagawa T and Nagaoka S 2001 Chem. Lett. 30 1252CrossRefGoogle Scholar
  57. 57.
    Ihara H, Uemura S, Okazaki S and Hirayama C 1998 Polym. J. 30 394CrossRefGoogle Scholar
  58. 58.
    Kaya I and Özdemir E 1995 Macromol. Rep. A32 377Google Scholar
  59. 59.
    Goto Y, Nakashima K, Mitsuishi K, Takafuji M, Sakaki S and Ihara H 2002 Chromatographia 56 19CrossRefGoogle Scholar
  60. 60.
    Sakaki S, Kato K, Miyazaki T, Musashi Y, Ohkubo K, Ihara H and Hirayama C 1993 J. Chem. Soc. Farady Trans. 89 659CrossRefGoogle Scholar
  61. 61.
    Seixas de Melo J S, Costa T, de Castro C S and Macanita A L 2013 Photophysics of fluorescently labeled oligomers and polymers In Photochemistry A Albini (Ed.) (Royal Society of Chemistry: London) Vol. 40 pp. 59-126Google Scholar
  62. 62.
    Talhavini M, Atvars T D Z, Cui C and Weiss R G 1996 Polymer 37 4365CrossRefGoogle Scholar
  63. 63.
    Becker-Guedes F, deAzevedo E R, Bonagamba T J and Schmidt- Rohr K 2004 Appl. Magn. Reson. 27 383CrossRefGoogle Scholar
  64. 64.
    Zimerman O E and Weiss R G 1998 J. Phys. Chem. A 102 5364CrossRefGoogle Scholar
  65. 65.
    Paterson R, Yampolskii Y P, Fogg P G T, Bokarev A, Bondar V, Ilinich O and Shishatskii S 1999 J. Phys. Chem. Ref. Data 28 1275CrossRefGoogle Scholar
  66. 66.
    Hirota S -I, Tominaga Y, Asai S and Sumita M 2005 J. Polym. Sci., Part B 43 2951CrossRefGoogle Scholar
  67. 67.
    Graham C, Imrie D A and Raab R E 1998 Mol. Phys. 93 49CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • KIZHMURI P DIVYA
    • 1
    • 2
  • MICHAEL J BERTOCCHI
    • 1
  • RICHARD G WEISS
    • 1
  1. 1.Department of ChemistryGeorgetown UniversityWashingtonUSA
  2. 2.PSMO CollegeKeralaIndia

Personalised recommendations