Advertisement

Journal of Chemical Sciences

, Volume 127, Issue 4, pp 627–633 | Cite as

Reversible structural transformations in a Co(II)-based 2D dynamic metal-organic framework showing selective solvent uptake

  • SANJOG S NAGARKAR
  • SUJIT K GHOSHEmail author
Article

Abstract

A Co(II)-based two-dimensional (2D) metal-organic framework (MOF) [Co(pca)(bdc)0.5(H2O)2] (1) {pca = pyrazine carboxylic acid, and bdc = 1,4-benzene dicarboxylic acid} was synthesized solvothermally. The compound loses the coordinated lattice water molecules on heating which is accompanied by solid-state structural transformation to yield dehydrated phase [Co(pca)(bdc)0.5] (\(\mathbf {1}^{\boldsymbol {\prime }}\)). The hydrated structure can be regained by exposing 1 \(^{\boldsymbol {\prime }}\) to water vapour (1 \(^{\boldsymbol {\prime \prime }}\)). These reversible solid-state structural transformations are accompanied by a visible colour change in the material. The dehydrated compound also shows highly selective water uptake over other solvents like MeOH, EtOH, THF. This selective water uptake can be ascribed to the high affinity of polar water molecule towards the open metal site created on heating. The present report provides important insights into the reversible structural transformations observed due to variable coordination number of the central metal ion and transformability of the framework. The selective water uptake over alcohols along with visible colour change demonstrates the potential of the present compound in bio-alcohol purification.

Graphical Abstract

Herein, we report a Co(II)-based 2D dynamic metal-organic framework synthesized under solvothermal conditions. The framework exhibits structural transformation accompanied by a visible colour change owing to the loss of coordinated water. The structure can be regained by selective water uptake over other solvents. The selective water uptake due to flexible framework and visible colour change demonstrates the potential of the present compound for bio-alcohol purification.

Keywords

Metal-organic frameworks coordination polymers selective uptake dynamic framework. 

Notes

Acknowledgements

S.S.N. is thankful to CSIR for research fellowship. We are grateful to IISER Pune for research facilities and DST (Project no. GAP/DST/CHE-12-0083) and DAE (Project no. 2011/20/37C/06/BRNS) for financial support.

References

  1. 1.
    Yoon M, Suh K, Natarajan S and Kim K 2013 Angew. Chem. Int. Ed. 52 2688Google Scholar
  2. 2.
    Li S-L and Xu Q 2013 Energy Environ. Sci. 6 1656Google Scholar
  3. 3.
    Laberty-Robert C, Valle K, Pereira F and Sanchez C 2011 Chem. Soc. Rev. 40 961Google Scholar
  4. 4.
    Hill G J, Nelson E, Tilman D, Polasky S and Tiffany D 2006 Proc. Natl. Acad. Sci. U. S. A. 103 11206Google Scholar
  5. 5.
    Gnansounou E and Dauriat A 2010 Bioresour. Technol. 101 4980Google Scholar
  6. 6.
    Luque R, Herrero-Davila L, Campelo J M, Clark J H, Hidalgo J M, Luna D, Marinas J M and Romero A A 2008 Energy Environ. Sci. 1 542Google Scholar
  7. 7.
    Sano T, Yanagishita H, Kiyozumi Y, Mizukami F and Haraya K J 1994 Membr. Sci. 95 221Google Scholar
  8. 8.
    Okamoto K, Kita H, Horii K and Tanaka K 2001 Ind. Eng. Chem. Res. 40 163Google Scholar
  9. 9.
    Tuan V A, Li S, Falconer J L and Noble R D 2002 J. Membr. Sci. 196 111Google Scholar
  10. 10.
    Nagarkar S S, Chaudhari A K and Ghosh S K 2012 Inorg. Chem. 51 572Google Scholar
  11. 11.
    Kitagawa S and Matsuda R 2007 Coord. Chem. Rev. 251 2490Google Scholar
  12. 12.
    Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M and Kim J 2003 Nature 423 705Google Scholar
  13. 13.
    Horike S, Umeyama D and Kitagawa S 2013 Acc. Chem. Res. 46 11Google Scholar
  14. 14.
    Nagarkar S S, Joarder B, Chaudhari A K, Mukherjee S and Ghosh S K 2013 Angew. Chem. Int. Ed. 52 2881Google Scholar
  15. 15.
    Czaja A U, Trukhan N and Mueller U 2009 Chem. Soc. Rev. 38 1284Google Scholar
  16. 16.
    Stock N and Biswas S 2012 Chem. Rev. 112 933Google Scholar
  17. 17.
    Zhao D, Meek S T, Greathouse J A and Allendorf M D 2011 Adv. Mater. 23 249Google Scholar
  18. 18.
    Perry J J, Perman J A and Zaworotko M J 2009 Chem. Soc. Rev. 38 1400Google Scholar
  19. 19.
    Cui Y, Yue Y, Qian G and Chen B 2011 Chem. Rev. 112 1126Google Scholar
  20. 20.
    Tanabe K K and Cohen S M 2011 Chem. Soc. Rev. 40 498Google Scholar
  21. 21.
    Kuppler R J, Timmons D J, Fang Q R, Li J R, Makal T A, Young M D, Yuan D Q, Zhao D, Zhuang W J and Zhou H C 2009 Coord. Chem. Rev. 253 3042Google Scholar
  22. 22.
    Ling Y, Chen Z-X, Zhai F-P, Zhou Y-M, Weng L-H and Zhao D-Y 2011 Chem. Commun. 47 7197Google Scholar
  23. 23.
    Shimomura S, Horike S, Matsuda R and Kitagawa S 2007 J. Am. Chem. Soc. 129 10990Google Scholar
  24. 24.
    Maji T K, Matsuda R and Kitagawa S 2007 Nature Mat. 6 142Google Scholar
  25. 25.
    Horike S, Shimomura S and Kitagawa S 2009 Nature Chem. 1 695Google Scholar
  26. 26.
    Manna B, Chaudhari A K, Joarder B, Karmakar A and Ghosh S K 2013 Angew. Chem. Int. Ed. 52 998Google Scholar
  27. 27.
    Joarder B, Chaudhari A K, Nagarkar S S, Manna B and Ghosh S K 2013 Chem. Eur. J. 19 11178Google Scholar
  28. 28.
    Li J-R, Kuppler R J and Zhou H-C 2009 Chem. Soc. Rev. 38 1477Google Scholar
  29. 29.
    Zhang J and Chen X-M 2008 J. Am. Chem. Soc. 130 6010Google Scholar
  30. 30.
    Yanai N, Umera T, Inoue M, Matsuda R, Fukushima T, Tsujimoto M, Isoda S and Kitagawa S 2012 J. Am. Chem. Soc. 134 4501Google Scholar
  31. 31.
    Gagnon K J, Beavers C M and Clearfield A 2013 J. Am. Chem. Soc. 135 1252Google Scholar
  32. 32.
    Coronado E and Espallargas G M 2013 Chem. Soc. Rev. 42 1525Google Scholar
  33. 33.
    SAINTPlus (Version 7.03) 2004 (Madison, WI: Bruker AXS Inc.Google Scholar
  34. 34.
    Sheldrick G M 1997 SHELXTL, Reference Manual, Version 5.1 ( Madison, WI: Bruker AXS)Google Scholar
  35. 35.
    Sheldrick G M 2008 Acta Crystallogr. Sect. A 112Google Scholar
  36. 36.
    Farrugia L J 2009 WINGX version 1.80.05 ( Glasgow: University of Glasgow)Google Scholar
  37. 37.
    Spek A L and PLATON A 2005 Multipurpose Crystallographic Tool ( Utrecht, The Netherlands: Utrecht University)Google Scholar
  38. 38.
    Nagarkar S S, Das R, Poddar P and Ghosh S K 2012 Inorg. Chem. 51 8317Google Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research (IISER)PuneIndia

Personalised recommendations