Journal of Chemical Sciences

, Volume 125, Issue 4, pp 835–841 | Cite as

Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable catalyst for synthesis of imidazoles under microwave irradiation



Trisubstituted imidazoles have been synthesized in high yield in the presence of sulphamic acid-functionalized magnetic Fe3O4 nanoparticles (SA–MNPs) as a novel solid acid catalyst under solvent-free classical heating conditions or using microwave irradiation. The heterogeneous catalyst could be recovered easily and reused many times without significant loss of catalytic activity.

Graphical Abstract

An efficient procedure for the synthesis of imidazoles has been developed by condensation reaction of 1, 2-diketones, aromatic aldehydes, and ammonium acetate using sulphamic acid-functionalized Fe3O4 nanoparticles under microwave irradiation. This method offers several advantages including high yield, short reaction time, simple work-up procedure and recyclability of the magnetic catalyst.


Magnetic nanoparticles sulphamic acid imidazole solid acid catalyst microwave irradiation 



We gratefully acknowledge the financial support from the Research Council of the University of Kashan (Grant No. (159198/I)).


  1. 1.
    Kong A, Wang P, Zhang H, Yang F, Huang S P and Shan Y 2012 Appl. Catal. A: Gen. 183 417Google Scholar
  2. 2.
    Shylesh S, Schunemann V and Thiel W R 2010 Angew. Chem. Int. Ed. 49 3428CrossRefGoogle Scholar
  3. 3.
    Yuan D, Zhang Q and Dou J 2010 Catal. Commun. 11 606CrossRefGoogle Scholar
  4. 4.
    Wang P, Kong A G, Wang W J, Zhu H Y and Shan Y K 2010 Catal. Lett. 135 159CrossRefGoogle Scholar
  5. 5.
    Sheldon R A and Downing R S 1999 Appl. Catal. A: Gen. 189 163CrossRefGoogle Scholar
  6. 6.
    Mitsutani A 2002 Catal. Today 73 57CrossRefGoogle Scholar
  7. 7.
    Safari J, Banitaba S H and Khalili S D 2011 J. Mol. Catal. A Chem. 335 46CrossRefGoogle Scholar
  8. 8.
    Kassaee M Z, Masrouri H and Movahedi F 2011 Appl. Catal. A: Gen. 395 28CrossRefGoogle Scholar
  9. 9.
    Safari J, Banitaba S H and Khalili S D 2011 Synth. Commun. 41 2359CrossRefGoogle Scholar
  10. 10.
    Safari J, Khalili S D, Rezaei M, Banitaba S H and Meshkani F 2010 Monotsh. Chem. 141 1339CrossRefGoogle Scholar
  11. 11.
    Sparks R B and Combs A P 2004 Org. Lett. 6 2473CrossRefGoogle Scholar
  12. 12.
    Zaman S, Mitsuru K and Abell A D 2005 Org. Lett. 7 609CrossRefGoogle Scholar
  13. 13.
    Tsuji J, Sakai K, Nemoto H and Nagashima H 1983 J. Mol. Catal. 18 169CrossRefGoogle Scholar
  14. 14.
    Evans D A and Lundy K M 1992 J. Am. Chem. Soc. 114 1495CrossRefGoogle Scholar
  15. 15.
    Radziszewski B 1882 Ber. Deut. Chem. Ges. 15 1493CrossRefGoogle Scholar
  16. 16.
    Wasserman H H, Long Y O, Zhang R and Parr J 2002 Tetrahedron Lett. 43 3351CrossRefGoogle Scholar
  17. 17.
    Kamitori Y 2001 J. Heterocycl. Chem. 38 773CrossRefGoogle Scholar
  18. 18.
    Zhang C, Moran E J, Woiwade T F, Short K M and Mjalli A M M 1996 Tetrahedron Lett. 37 751CrossRefGoogle Scholar
  19. 19.
    Lantos I, Zhang W Y, Shui Y and Eggleston D S 1993 J. Org. Chem. 58 7092CrossRefGoogle Scholar
  20. 20.
    Bleicher K H, Gerber F, Wuthrich Y, Alanine A and Capretta A 2002 Tetrahedron Lett. 43 76870CrossRefGoogle Scholar
  21. 21.
    Balalaie S, Hashemi M M and Akhbari M 2003 Tetrahedron Lett. 44 1709CrossRefGoogle Scholar
  22. 22.
    Paone D V and Shaw A W 2008 Tetrahedron Lett. 49 6155CrossRefGoogle Scholar
  23. 23.
    Shaabani A and Rahmati A 2006 J. Mol. Catal. A Chem. 249 246CrossRefGoogle Scholar
  24. 24.
    Shaabani A, Rahmati A, Farhangi E and Badri Z 2007 Catal. Commun. 8 1149CrossRefGoogle Scholar
  25. 25.
    Shelke K F, Sapkal S B, Sonar S S, Madje B R, Shingate B B and Shingare M S 2009 Bull. Korean Chem. Soc. 30 1057CrossRefGoogle Scholar
  26. 26.
    Jadhave S D, Kokare N D and Jadhave S D 2009 J. Heterocycl. Chem. 45 1461CrossRefGoogle Scholar
  27. 27.
    Weinmann H, Harre M, Koeing K, Merten E and Tilestam U 2002 Tetrahedron Lett. 43 593CrossRefGoogle Scholar
  28. 28.
    Liu J, Chen J, Zhao J, Zhao Y, Li L and Zhang H 2003 Synthesis 2661Google Scholar
  29. 29.
    Kokare N D, Sangshetti J N and Shinde D B 2007 Synthesis 2829Google Scholar
  30. 30.
    Khodaei M M, Bahrami K and Kavianinia I 2007 J. Chin. Chem. Soc. 54 829Google Scholar
  31. 31.
    De La Hoz A, Diaz-Ortiz A and Moreno A 2004 Curr. Org. Chem. 8 903CrossRefGoogle Scholar
  32. 32.
    Kappe C O 2004 Angew. Chem. Int. Ed. 43 6250CrossRefGoogle Scholar
  33. 33.
    Yang D, Hu J and Fu S 2009 J. Phys. Chem. C 113 7646CrossRefGoogle Scholar
  34. 34.
    Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y and Zhao D 2010 J. Am. Chem. Soc. 132 8466CrossRefGoogle Scholar
  35. 35.
    Massart R 1981 IEEE Trans. Magn. 17 1247CrossRefGoogle Scholar
  36. 36.
    Cullity B D and Stock S R 2001 Elements of X-ray diffraction, 3rd Edition, Englewood Cliffs: Prentice-HallGoogle Scholar
  37. 37.
    Jiang Y, Jiang J, Gao Q, Ruan M, Yu H and Qi L 2008 Nanotechnology 19 75714CrossRefGoogle Scholar
  38. 38.
    Hu B, Pan J, Yu H L, Liu J W and Xu J H 2009 Process Biochem. 44 1019CrossRefGoogle Scholar
  39. 39.
    Chen F H, Gao Q and Ni J Z 2008 Nanotechnology 19 165103CrossRefGoogle Scholar
  40. 40.
    Safari J, Banitaba S H and Khalili S D 2010 J. Chem. Sci. 122 437CrossRefGoogle Scholar
  41. 41.
    Lombardino J G 1972 DE 2 155 558 [1973 US 3 772 441]Google Scholar
  42. 42.
    Safari J, Khalili S D, Banitaba S H and Dehghani H 2011 J. Korean Chem. Soc. 55 1CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  1. 1.Laboratory of Organic Compound Research, Department of Organic Chemistry, College of ChemistryUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations