Journal of Chemical Sciences

, Volume 124, Issue 5, pp 995–1006 | Cite as

Theoretical studies on a series of 1,2,4-triazoles derivatives as potential high energy density compounds

  • Zhang Rui-Zhou
  • Li Xiao-HongEmail author
  • Zhang Xian-Zhou


Density functional theory calculations at B3LYP/6-31G** and B3P86/6-31G** levels were performed to predict the densities (ρ), detonation velocities (D), pressures (P) and the thermal stabilities for a series of 1,2,4-triazole derivatives for looking high energy density compounds (HEDCs). The heats of formation (HOFs) are also calculated via designed isodesmic reactions. The calculations on the bond dissociation energies (BDEs) indicate that the position of the subsitutent group has great effect on the BDE and the BDEs of the initial scission step are between 31 and 65 kcal/mol. In addition, the condensed phase heats of formation are also calculated for the title compounds. These results would provide basic information for further studies of HEDCs.

Graphical Abstract

Densities, detonation velocities and pressures for a series of 1,2,4-triazole derivatives, as well as their thermal stabilities, were investigated to look for high energy density compounds (HEDCs). Heats of formation (HOFs) were also calculated via designed isodesmic reactions. 5,5′-Dinitro-3,3′-bi-1,2,4-triazole, 3-nitro-1-picryl-1,2,4-triazole and 4-(2,4-dinitrobenzyl)-3,5-dinitro-1,2,4-triazole satisfy the quantitative standard of HEDC.


Density functional theory heat of formation bond dissociation energy isodesmic reactions detonation performance 



We thank the National Natural Science Foundation of China (Grant 10774039) and the grant from Development Program in Science and Technology of Henan Province (No. 112300410206), Scientific and Technical Research Foundation for the Education Department of Henan Province (No. 12A140004) for their support to carry out this work.


  1. 1.
    Sikder A K and Sikder N 2004 J. Hazard. Mater. 112 1CrossRefGoogle Scholar
  2. 2.
    Sikder A K, Maddalla G, Agraval J P and Singh H 2001 J. Hazard. Mater. 84 1CrossRefGoogle Scholar
  3. 3.
    Olcay B and Hakan B 2006 Molecules 11 469CrossRefGoogle Scholar
  4. 4.
    Thomas S, Biswas N, Venkateswaran S, Kapoor S, D’Cunha R and Mukherjee T 2005 Chem. Phys. Lett. 402 361CrossRefGoogle Scholar
  5. 5.
    Chen L-M, Chen J-C, Luo H, Liao S-Y and Zheng K-C 2011 J. Theor. Comput. Chem. 10 581CrossRefGoogle Scholar
  6. 6.
    Fried L E, Manaa M R, Pagoria P F and Simpson R L 2001 Annu. Rev. Mater. Res. 31 291CrossRefGoogle Scholar
  7. 7.
    Boyer J S 1986 Nitrozoles (Deerfield Beach: VCH Publishers) Vol. 1Google Scholar
  8. 8.
    Yuxiang O, Boren C, Jiarong L, Shuan D, Jianjuan L and Huiping J 1994 Heterocycles 38 1651CrossRefGoogle Scholar
  9. 9.
    Krishna Kumar V, Keresztury G, Sundius T and John Xavier R 2005 Spectrochim. Acta A 61 261CrossRefGoogle Scholar
  10. 10.
    Karayel A and Ozbey S 2008 Struct. Chem. 19 391CrossRefGoogle Scholar
  11. 11.
    Krishnakumar V and John Xavier R 2004 Spectrochim. Acta A 60 709CrossRefGoogle Scholar
  12. 12.
    Azhary EI A A, Suter H U and Kubelka J 1998 J. Phys. Chem. A 102 620CrossRefGoogle Scholar
  13. 13.
    Fang G Y, Xu L N, Xiao H M and Ju X H 2005 Acta Chimica Sinica 63 1055Google Scholar
  14. 14.
    Xu L N, Xiao H M, Fang G Y and Ju X H 2005 Acta Chimica Sinica 63 1062Google Scholar
  15. 15.
    Prabharan K V, Naidu S R and Kurian E M 1994 XRD, Thermochim. Acta 241 199CrossRefGoogle Scholar
  16. 16.
    Sikder A K, Geetha M, Sarwade D B and Agrawal J P 2001 J. Hazard. Mater. 82 1CrossRefGoogle Scholar
  17. 17.
    Kamlet M J 1976 in Proceedings of the 6th Symposium (International) Deton. Report No. ACR 221 (Office of Naval Research), p. 312Google Scholar
  18. 18.
    Kamlet M J and Adolph H G 1979 Propell. Expl. 4 30CrossRefGoogle Scholar
  19. 19.
    Brill T B and James K 1993 Chem. Rev. 93 2667CrossRefGoogle Scholar
  20. 20.
    Murray J S and Politzer P 1990 Structure–sensitivity relationships in energetic compounds, in: Bulusu S N (Ed.), Chemistry and Physics of Energetic Materials (Netherlands: Kluwer Academic Publishers), p. 157Google Scholar
  21. 21.
    Zhang S W and Truong T N 2000 J. Phys. Chem. A 104 7304CrossRefGoogle Scholar
  22. 22.
    Zhao Q, Zhano S and Li Q S 2005 Chem. Phys. Lett. 407 105CrossRefGoogle Scholar
  23. 23.
    Ju X H, Li Y M and Xiao H M 2005 J. Phys. Chem. A 109 934CrossRefGoogle Scholar
  24. 24.
    Fan X W and Ju X H 2008 J. Comput. Chem. 29 505CrossRefGoogle Scholar
  25. 25.
    Rice B M, Pai A V and Hare J 1999 Combust. Flame 118 445CrossRefGoogle Scholar
  26. 26.
    Cobos C J 2005 J. Mol. Struct. (THEOCHEM) 714 147CrossRefGoogle Scholar
  27. 27.
    Fan X W, Ju X H, Xiao HM and Qiu L 2006 J. Mol. Struct. (THEOCHEM) 801 55CrossRefGoogle Scholar
  28. 28.
    Luo Y R 2003 Handbook of bond dissociation energies in organic compounds (Boca Raton, FL: CRC Press)Google Scholar
  29. 29.
    Parr R G and Yang W 1989 Density functional theory of atoms and molecules (Oxford: Oxford University Press)Google Scholar
  30. 30.
    Seminario J M and Politzer P 1995 Modern density functional theory: A tool for chemistry (Amsterdam: Elsevier)Google Scholar
  31. 31.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head Gordon M, Replogle E S and Pople J A 2003 GAUSSIAN 03, Revision B.02 (Pittsburgh PA: Gaussian Inc.)Google Scholar
  32. 32.
    Becke A D 1993 J. Chem. Phys. 98 5648CrossRefGoogle Scholar
  33. 33.
    Lee C, Yang W and Parr RG 1988 Phys. Rev. B 37 785CrossRefGoogle Scholar
  34. 34.
    Perdew J P 1986 Phys. Rev. B 33 8822CrossRefGoogle Scholar
  35. 35.
    Rice B M, Sahu S and Owens F J 2002 J. Mol. Struct. (Theochem) 583 69CrossRefGoogle Scholar
  36. 36.
    Hahre W J, Ditchfield R, Radom L and Pople J A 1970 J. Am. Chem. Soc. 92 4796CrossRefGoogle Scholar
  37. 37.
    Li X-H, Zhang R-Z, Yang X-D and Zhang H 2007 J. Mol. Struct. (Theochem) 815 151CrossRefGoogle Scholar
  38. 38.
    Li X-H, Zhang R-Z, Cheng X-L and Yang X-D 2007 J. Theor. Comput. Chem. 6 449CrossRefGoogle Scholar
  39. 39.
    Li X-H, Zhang R-Z, Zhang X-Z, Cheng X-L and Yang X-D 2007 J. Theor. Comput. Chem. 6 675CrossRefGoogle Scholar
  40. 40.
    Leena R, Jissy A K, Krishnapillai Girish K and Ayan D 2011 J. Phys. Chem. C 115 21858CrossRefGoogle Scholar
  41. 41.
    Chung G S, Schimidt M W and Gordon M S 2000 J. Phys. Chem. A 104 5647CrossRefGoogle Scholar
  42. 42.
    Li X-H, Zhang R-Z, Zhang X-Z, Yang X-D and Cheng X-L 2007 Chinese J. Struct. Chem. 26 1481Google Scholar
  43. 43.
    Fan X-W, Ju X-H and Xiao H-M 2008 J. Hazard. Mater. 156 342CrossRefGoogle Scholar
  44. 44.
    Song X-S, Cheng X-L, Yang X-D, Li D-H and Rongfeng L-H 2008 J. Hazard. Mater. 150 317CrossRefGoogle Scholar
  45. 45.
    Scott A P and Radom L 1996 J. Phys. Chem. 100 16502CrossRefGoogle Scholar
  46. 46.
    Hahre W J, Radom L and Schleyer P V R 1986 Ab initio molecular orbital theory (New York: Wiley)Google Scholar
  47. 47.
    Frenkel M, Kabo G J, Marsh K N, Roganov G N and Wilhoit C R 1994 Thermodynamics of organic compounds in the gas state (College Station, TX: Thermodynamic Research Center) Vol. IIGoogle Scholar
  48. 48.
    Politzer P, Murray J S, Brinck T and Lane P 1994 In immunoanalysis of agrochemicals (Washington, DC: American Chemical Society)Google Scholar
  49. 49.
    Murray J S and Politzer P 1994 Quantitative treatment of solute/solvent interactions (Amsterdam: Elsevier Scientific)Google Scholar
  50. 50.
    Politzer P and Murray J S 1998 J. Phys. Chem. A 102 1018CrossRefGoogle Scholar
  51. 51.
    Kamlet M J and Jacobs S J 1968 J. Chem. Phys. 48 23CrossRefGoogle Scholar
  52. 52.
    Zhang X-H and Yun Z-H 1989 Explosive chemistry (Beijing, Peoples Republic of China: National Defense Industry Press)Google Scholar
  53. 53.
    Politzer P, Martinez J, Murray J S, Concha M C and Toro-Labbe A 2009 Molecul. Phys. 107 2095CrossRefGoogle Scholar
  54. 54.
    Ou Y X and Chen J J 2005 The high energy and density compounds, 1st ed. (Beijing: National Defense Industry Press)Google Scholar
  55. 55.
    Xiao H M, Xu X J and Qiu L 2008 Theoretical design of high energy density materials (Beijing: Science Press)Google Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  • Zhang Rui-Zhou
    • 1
    • 2
  • Li Xiao-Hong
    • 1
    • 2
    Email author
  • Zhang Xian-Zhou
    • 3
  1. 1.College of Physics and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.Luoyang Key Laboratory of Photoelectric Functional MaterialsHenan University of Science and TechnologyLuoyangChina
  3. 3.College of Physics and Information EngineeringHenan Normal UniversityXinxiangChina

Personalised recommendations