Journal of Chemical Sciences

, Volume 123, Issue 2, pp 187–199 | Cite as

Synthesis, structure and applications of [cis-dioxomolybdenum(VI)-(ONO)] type complexes

Article

Abstract

Oxo-molybdenum chemistry is of great interest since such units are found in the active sites of a majority of molybdo-enzymes. In order to mimic the biological systems, a number of oxo-molybdenum complexes have been synthesised and studied. This review describes synthesis, structure and applications of oxo-molybdenum complexes particularly cis-MoO2(L)(D) where L stands for a dianionic tridentate ONO ligand and D for a donor solvent molecule/monodentate ligand. The ligand moieties are derived from Schiff base, hydrazide Schiff base and other related tridentate ligands L(H)2. The coordination geometry around the Mo center in these complexes can be best described as a distorted octahedron in which the ONO-tridentate ligand occupies meridional position with two anionic oxygen donors mutually trans and are cis to the oxygen centers of the cis-dioxo group. Mostly the applications of cis-MoO2-(ONO) type complexes seen in literature are oxo transfer reactions like epoxidation, sulfoxidation and phosphine oxidation reactions.

Graphical Abstract

This review describes synthesis, structure and applications of oxomolybdenum complexes particularly cis-MoO2(L)(D) where L stands for a dianionic tridentate ONO ligand and D for a donor solvent molecule/monodentate ligand. The ligand moieties are derived from Schiff base, hydrazide Schiff base and other related tridentate ligands.

Keywords

Dioxomolybdenum(VI) ONO ligands Oxo transfer reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hille R 1996 Chem. Rev. 96 2757CrossRefGoogle Scholar
  2. 2.
    (a) Grasselli R K 1999 Catal. Today 49 141; (b) Jørgensen K A 1989 Chem. Rev. 89 431; (c) Schrock R R and Hoveyda A H 2003 Angew. Chem. Int. Ed. 42 4592Google Scholar
  3. 3.
    Jeyakumar K and Chand D K 2009 J. Chem. Sci. 121 111CrossRefGoogle Scholar
  4. 4.
    Sanz R and Pedrosa M R 2009 Curr. Org. Synth. 6 239CrossRefGoogle Scholar
  5. 5.
    Syamal A and Maurya M R 1989 Coord. Chem. Rev. 95 183CrossRefGoogle Scholar
  6. 6.
    Rajan O A and Chakravorty A 1979 Inorg. Chim. Acta 37 L503CrossRefGoogle Scholar
  7. 7.
    Topich J 1980 Inorg. Chim. Acta 46 L37CrossRefGoogle Scholar
  8. 8.
    Dey K, Maiti R K and Bhar J K 1981 Transition Met. Chem. 6 346CrossRefGoogle Scholar
  9. 9.
    Rajan O A and Chakravorty A 1981 Inorg. Chem. 20 660CrossRefGoogle Scholar
  10. 10.
    Topich J and Lyon J T III 1984 Polyhedron 3 55CrossRefGoogle Scholar
  11. 11.
    Syamal A and Maurya M R 1986 Indian J. Chem. A25 1152Google Scholar
  12. 12.
    Syamal A and Maurya M R 1986 Synth. React. Inorg. Met.-Org. Chem. 16 857CrossRefGoogle Scholar
  13. 13.
    Casella L, Gullotti M, Pintar A, Colonna S and Manfredi A 1988 Inorg. Chim. Acta 144 89CrossRefGoogle Scholar
  14. 14.
    Craig J A, Harlan E W, Snyder B S, Whitener M A and Holm R H 1989 Inorg. Chem. 28 2082CrossRefGoogle Scholar
  15. 15.
    Mohanty R N, Chakravortty V and Dash K C 1991 Polyhedron 10 33CrossRefGoogle Scholar
  16. 16.
    Nakajima K, Yokoyama K, Kano T and Kojima M 1998 Inorg. Chim. Acta 282 209CrossRefGoogle Scholar
  17. 17.
    Maurya M R, Jayaswal M N, Puranik V G, Chakrabarti P, Gopinathan S and Gopinathan C 1997 Polyhedron 16 3977CrossRefGoogle Scholar
  18. 18.
    Rao C P, Sreedhara A, Rao P V, Verghese M B, Rissanen K, Kolehmainen E, Lokanath N K, Sridhar M A and Prasad J S 1998 J. Chem. Soc., Dalton Trans. 2383Google Scholar
  19. 19.
    Rao C P, Sreedhara A, Rao P V, Lokanath N K, Sridhar M A, Prasad J S and Rissanen K 1999 Polyhedron 18 289CrossRefGoogle Scholar
  20. 20.
    Liimatainen J, Lehtonen A and Sillanpää R 2000 Polyhedron 19 1133CrossRefGoogle Scholar
  21. 21.
    Kato M, Nakajima K, Yoshikawa Y, Hirotsu M and Kojima M 2000 Inorg. Chim. Acta 311 69CrossRefGoogle Scholar
  22. 22.
    Sandbhor U, Padhye S and Sinn E 2002 Transition Met. Chem. 27 681CrossRefGoogle Scholar
  23. 23.
    Zhou X, Zhao J, Santos A M and Kühn F E 2004 Z. Naturforsch. 59b 1223Google Scholar
  24. 24.
    Sui Y, Zeng X, Fang X, Fu X, Xiao Y, Chen L, Li M and Cheng S 2007 J. Mol. Catal. A: Chem. 270 61CrossRefGoogle Scholar
  25. 25.
    Sheikhshoaie I, Rezaeifard A, Monadi N and Kaafi S 2009 Polyhedron 28 733CrossRefGoogle Scholar
  26. 26.
    Topich J 1981 Inorg. Chem. 20 3704CrossRefGoogle Scholar
  27. 27.
    Sobczak J M, Głowiak T and Ziółkowski J J 1990 Transition Met. Chem. 15 208CrossRefGoogle Scholar
  28. 28.
    Mondal J U, Schultz F A, Brennan T D and Scheidt W R 1988 Inorg. Chem. 27 3950CrossRefGoogle Scholar
  29. 29.
    Zhang C, Rheinwald G, Lozan V, Wu B, Lassahn P-G, Lang H and Janiak C 2002 Z. Anorg. Allg. Chem. 628 1259CrossRefGoogle Scholar
  30. 30.
    Głowiak T, Jerzykiewicz L, Sobczak J M and Ziółkowski J J 2003 Inorg. Chim. Acta 356 387CrossRefGoogle Scholar
  31. 31.
    Sah A K, Rao C P, Saarenketo P K, Wegelius E K, Kolehmainen E and Rissanen 2001 Eur. J. Inorg. Chem. 2773Google Scholar
  32. 32.
    Zhao J, Zhou X, Santos A M, Herdtweck E, Romão C C and Kühn F E 2003 Dalton Trans. 3736Google Scholar
  33. 33.
    Cindrić M, Strukan N, Vrdoljak V, Kajfež T and Kamenar B 2002 Z. Anorg. Allg. Chem. 628 2113CrossRefGoogle Scholar
  34. 34.
    Lehtonen A and Sillanpää R 2005 Polyhedron 24 257CrossRefGoogle Scholar
  35. 35.
    Syamal A and Kumar D 1982 Transition Met. Chem. 7 118CrossRefGoogle Scholar
  36. 36.
    Syamal A and Kumar D 1982 Indian J. Chem. A21 534Google Scholar
  37. 37.
    Prabhakaran C P and Nair B G 1983 Transition Met. Chem. 8 368CrossRefGoogle Scholar
  38. 38.
    Syamal A and Maurya M R 1986 Transition Met. Chem. 11 235CrossRefGoogle Scholar
  39. 39.
    Gupta S, Barik A K, Pal S, Hazra A, Roy S, Butcher R J and Kar S K 2007 Polyhedron 26 133CrossRefGoogle Scholar
  40. 40.
    Syamal A and Maurya M R 1986 Transition Met. Chem. 11 201CrossRefGoogle Scholar
  41. 41.
    Dinda R, Sengupta P, Ghosh S, Mayer-Figge H and Sheldrick W S 2002 J. Chem. Soc., Dalton Trans. 4434Google Scholar
  42. 42.
    Dinda R, Sengupta P, Ghosh S and Sheldrick W S 2003 Eur. J. Inorg. Chem. 363Google Scholar
  43. 43.
    Arnáiz F J, Aguado R, Pedrosa M R, Cian A D and Fischer J 2000 Polyhedron 19 2141CrossRefGoogle Scholar
  44. 44.
    Barbaro P, Belderrain T R, Bianchini C, Scapacci G and Masi D 1996 Inorg. Chem. 35 3362CrossRefGoogle Scholar
  45. 45.
    Bellemin-Laponnaz S, Coleman K S, Dierkes P, Masson J-P and Osborn J A 2000 Eur. J. Inorg. Chem. 1645Google Scholar
  46. 46.
    Maurya M R, Kumar U and Manikandan P 2006 Dalton Trans. 3561Google Scholar
  47. 47.
    Topich J and Lyon J T III 1984 Inorg. Chem. 23 3202CrossRefGoogle Scholar
  48. 48.
    Boyd I W and Spence J T 1982 Inorg. Chem. 21 1602CrossRefGoogle Scholar
  49. 49.
    Kessissoglou D P, Raptopoulou C P, Bakalbassis E G, Terzis A and Mrozinski J 1992 Inorg. Chem. 31 4339CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  • RAJAN DEEPAN CHAKRAVARTHY
    • 1
  • DILLIP KUMAR CHAND
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations