Journal of Chemical Sciences

, Volume 121, Issue 5, pp 589–594 | Cite as

Theory of coherent molecule to surface electron injection: An analytical model

  • S. Ramakrishna
  • T. SeidemanEmail author
  • F. Willig
  • V. May


Electron transfer from a molecular level to empty continuum levels of a substrate is described theoretically. Using a quasicontinuum approach to model the substrate, analytical expressions pertaining to the time-dependent probability among the various levels of the substrate is presented along with its extension to coherently excited molecular vibrational modes. Hidden time scales and dynamics are revealed in the analysis and possible experiments to observe the new results are suggested. We note the applicability of the model to the description of a variety of other phenomena that are formally similar to the electron injection problem, although pertaining to different physics.


Heterogeneous electron transfer photoinduced ultrafast dynamics vibrational wavepackets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller R D, McLendon G L, Nozik A J, Schmickler W and Willig F 1995 In Surface electron transfer processes (New York: VCH)Google Scholar
  2. 2.
    Guo H, Saalfrank P and Seideman T 1999 Prog. Surf. Sci. 62 239CrossRefGoogle Scholar
  3. 3.
    Nitzan A and Ratner M A 2003 Science 300 1384CrossRefGoogle Scholar
  4. 4.
    Ramakrishna S, Willig F and May V 2001 J. Chem. Phys. 115 2743CrossRefGoogle Scholar
  5. 5.
    Zimmermann C, Willig F, Ramakrishna S, Burfeindt B, Pettinger B, Eichberger R and Storck W 2001 J. Phys. Chem. B105 9245Google Scholar
  6. 6.
    Benko G, Kallioinen J, Korppi-Tommola E I, Yartsev A P and Sundström V 2002 J. Am. Chem. Soc. 124 489CrossRefGoogle Scholar
  7. 7.
    Domcke W 1991 Phys. Rep. 208 97CrossRefGoogle Scholar
  8. 8.
    Kyrölä E and Eberly J H 1985 J. Chem. Phys. 82 1841CrossRefGoogle Scholar
  9. 9.
    Sebastian K L and Tachiya M 2006 J. Chem. Phys. 124 064713Google Scholar
  10. 10.
    Ramakrishna S, Willig F and May V 2000 Phys. Rev. B62 R16330Google Scholar
  11. 11.
    Mohr J, Schmickler W and Badiali J P 2006 Chem. Phys. 324 140CrossRefGoogle Scholar
  12. 12.
    Tsivlin D V, Willig F and May V 2008 Phys. Rev. B77 035319Google Scholar
  13. 13.
    Weisskopf V F and Wigner E 1930 Z. Phys. 63 54CrossRefGoogle Scholar
  14. 14. (a)
    Anderson P W 1961 Phys. Rev. 124 41CrossRefGoogle Scholar
  15. 14. (b)
    Fano U 1961 Phys. Rev. 124 1866CrossRefGoogle Scholar
  16. 15.
    Haug H and Koch S W 1993 Quantum theory of the optical and electronic properties of semiconductors (Singapore: World Scientific)Google Scholar
  17. 16.
    Maschke K, Thomas P and Göbel E O 1991 Phys. Rev. Lett. 67 2646CrossRefGoogle Scholar
  18. 17.
    Petek H and Ogawa S 1997 Prog. Surf. Sci. 56 239CrossRefGoogle Scholar
  19. 18.
    Gundlach L, Ernstorfer R and Willig F 2007 Prog. Surf. Sci. 82 355CrossRefGoogle Scholar
  20. 19.
    Asbury J B, Hao E, Wang Y, Ghosh H H and Lian T 2001 J. Phys. Chem. B105 4545Google Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  • S. Ramakrishna
    • 1
  • T. Seideman
    • 1
    Email author
  • F. Willig
    • 2
  • V. May
    • 3
  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA
  2. 2.Fritz-Haber-Institut der MPGBerlinGermany
  3. 3.Institut für PhysikHumboldt-Universität, AG PhotobiophysikBerlinGermany

Personalised recommendations