Advertisement

Journal of Chemical Sciences

, Volume 121, Issue 3, pp 235–256 | Cite as

Quest for new materials: Inorganic chemistry plays a crucial role

  • J. GopalakrishnanEmail author
  • Rohini Mani
Article

Abstract

There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry — inorganic chemistry in particular — plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states — all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature as well as from the research work of my group.

Keywords

Materials for technology role of inorganic chemistry acidity/basicity oxidation/reduction crystal field theory Jahn-Teller distortions mixed valence metal-metal bonding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jäschke T and Jansen M 2006 J. Mater. Chem. 16 2792CrossRefGoogle Scholar
  2. 2.
    Sleight A W 1998 Inorg. Chem. 37 2854CrossRefGoogle Scholar
  3. 3.
    Grätzel M 2001 Nature 414 338CrossRefGoogle Scholar
  4. 4.
    Tachikawa T, Fujitsuka M and Majima T 2007 J. Phys. Chem. C111 5259Google Scholar
  5. 5.
    Steele B C H and Heinzel A 2001 Nature 414 345CrossRefGoogle Scholar
  6. 6.
    Tarascon J-M and Armand M 2001 Nature 414 359CrossRefGoogle Scholar
  7. 7.
    Kauzlarich S M, Brown S R and Snyder G J 2007 Dalton Trans. 2099Google Scholar
  8. 8.
    Schlapbach L and Züttel A 2001 Nature 414 353CrossRefGoogle Scholar
  9. 9.
    Theme issue: new energy materials 2007 J. Mater. Chem. 17 3053 (Guest Editor: M Saiful Islam)Google Scholar
  10. 10.
    Eisenberg R and Nocera D G 2005 Inorg. Chem. 44 6799CrossRefGoogle Scholar
  11. 11.
    Felser C, Fecher G H and Balke B 2007 Angew. Chem. Intl. Ed. 46 668CrossRefGoogle Scholar
  12. 12.
    Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759CrossRefGoogle Scholar
  13. 13.
    Kabbour H, Cario L, Jobic S and Corraze B 2006 J. Mater. Chem. 16 4165CrossRefGoogle Scholar
  14. 14.
    Cross L E 2004 Nature 432 24CrossRefGoogle Scholar
  15. 15.
    Sleight A W 1995 Acc. Chem. Res. 28 103CrossRefGoogle Scholar
  16. 16.
    Ball P 2006 Nature 442 500CrossRefGoogle Scholar
  17. 17.
    (a) See for example, Shriver D F and Atkins P W 2002 Inorganic chemistry 3rd edn (OUP)Google Scholar
  18. 17.
    (b) Smith D W 1987 J. Chem. Edu. 64 480CrossRefGoogle Scholar
  19. 18.
    Rao C N R and Gopalakrishnan J 1997 New directions in solid state chemistry 2nd edn (CUP)Google Scholar
  20. 19.
    Bhuvanesh N S P 1997 Ph D thesis, Indian Institute of Science, BangaloreGoogle Scholar
  21. 20.
    Shukoor M I, Therese H A, Gorgishvili L, Glasser G, Kolb U and Tremel W 2006 Chem. Mater. 18 2144CrossRefGoogle Scholar
  22. 21.
    Ganapathi L, Ramanan A, Gopalakrishnan J and Rao C N R 1986 J. Chem. Soc., Chem. Commun. 62Google Scholar
  23. 22.
    Gopalakrishnan J, Bhuvanesh N S P and Raju A R 1994 Chem. Mater. 6 373CrossRefGoogle Scholar
  24. 23.
    Nedjar R, Borel M M and Raveau B 1985 Mater. Res. Bull. 20 1291CrossRefGoogle Scholar
  25. 24.
    Livage J 1991 Chem. Mater. 3 578CrossRefGoogle Scholar
  26. 25.
    Bhat V and Gopalakrishnan J 1988 Solid State Ionics 26 25CrossRefGoogle Scholar
  27. 26.
    Bhuvanesh N S P and Gopalakrishnan J 1995 Inorg. Chem. 34 3760CrossRefGoogle Scholar
  28. 27.
    Gopalakrishnan J 1995 Chem. Mater. 7 1265CrossRefGoogle Scholar
  29. 28.
    Gopalakrishnan J and Bhat V 1987 Inorg. Chem. 26 4299CrossRefGoogle Scholar
  30. 29.
    Bhuvanesh N S P, Prasad B R, Subramanian C K and Gopalakrishnan J 1996 Chem. Commun. 289Google Scholar
  31. 30.
    Goodenough J B 1974 in Solid state chemistry (ed) C N R Rao (New York: Marcel Dekker)Google Scholar
  32. 31.
    Rouxel J 1997 Curr. Sci. 73 31Google Scholar
  33. 32.
    Bhat V and Gopalakrishnan J 1986 J. Chem. Soc., Chem. Commun. 1644Google Scholar
  34. 33.
    Ramesha K and Gopalakrishnan J 1999 J. Chem. Soc., Chem. Commun. 1173Google Scholar
  35. 34.
    Gopalakrishnan J and Rangan K K 1992 Chem. Mater. 4 745CrossRefGoogle Scholar
  36. 35.
    Rangan K K, Prasad B R, Subramanian C K and Gopalakrishnan J 1994 J. Chem. Soc., Chem. Commun. 141Google Scholar
  37. 36.
    Ramesha K and Gopalakrishnan J 2001 Solid State Sciences 3 113CrossRefGoogle Scholar
  38. 37.
    Crosnier M P, Guyomard D, Verbaere A, Piffard Y and Tournoux M 1992 J. Solid State Chem. 98 128CrossRefGoogle Scholar
  39. 38.
    Sivakumar T and Gopalakrishnan J 2002 Chem. Mater. 14 3984CrossRefGoogle Scholar
  40. 39. (a)
    Gopalakrishnan J, Chattopadhyay A, Ogale S B, Venkatesan T, Greene R L, Millis A J, Ramesha K, Hannoyer B and Marest G 2000 Phys. Rev. B62 9538Google Scholar
  41. 39. (b)
    Sleight A W and Weiher J F 1972 J. Phys. Chem. Solids 33 679CrossRefGoogle Scholar
  42. 39. (c)
    Nag A, Manjanna J, Tiwari R M and Gopalakrishnan J 2008 Chem. Mater. 20 4420CrossRefGoogle Scholar
  43. 40.
    Ramesha K, Thangadurai V, Sutar D, Subramanyam S V, Subbanna G N and Gopalakrishnan J 2000 Mater. Res. Bull. 35 559CrossRefGoogle Scholar
  44. 41.
    Bassett J, Denney R C, Jeffery G H and Mendham J 1978 Vogel’s textbook of quantitative inorganic analysis 4th edn (London: Longman)Google Scholar
  45. 42.
    Harris D C 1992 in Chemistry of superconductor materials (ed.) T Vanderah (Park Ridge: Noyes Publications)Google Scholar
  46. 43.
    Gopalakrishnan J, Vijayaraghavan R, Nagarajan R and Shivakumara C 1991 J. Solid State Chem. 93 272; J. Solid State Chem. 96 468CrossRefGoogle Scholar
  47. 44.
    Gopalakrishnan J, Pandey S and Rangan K K 1997 Chem. Mater. 9 2113CrossRefGoogle Scholar
  48. 45.
    Machida M, Kawamura K and Ito K 2004 Chem. Commun. 662Google Scholar
  49. 46.
    See, for example, Goodenough J B 2005 Solid State Sciences 7 642CrossRefGoogle Scholar
  50. 47.
    Vidyasagar K, Reller A, Gopalakrishnan J and Rao C N R 1985 J. Chem. Soc., Chem. Commun. 7Google Scholar
  51. 48. (a)
    Hiroi Z and Takano M 1995 Nature (London) 377 41CrossRefGoogle Scholar
  52. 48. (b)
    Khasanova N R, Izumi F, Hiroi Z, Takano M, Huang Q and Santoro A 1996 Acta Crystallogr. C52 2381Google Scholar
  53. 49. (a)
    Poeppelmeier K R, Leonowicz M E and Longo J M 1982 J. Solid State Chem. 44 89CrossRefGoogle Scholar
  54. 49. (b)
    Poeppelmeier K R, Leonowicz M E, Scanlon J C, Longo J M and Yelon W B 1982 J. Solid State Chem. 45 71CrossRefGoogle Scholar
  55. 50. (a)
    Goodenough J B 2004 Rep. Prog. Phys. 67 1915CrossRefGoogle Scholar
  56. 50. (b)
    Maris G, Ren Y, Volotchaev V, Zobel C, Lorenz T and Palstra T T M 2003 Phys. Rev. B67 224423Google Scholar
  57. 51.
    Maignan A, Martin C, Pelloquin D, Nguyen N and Raveau B 1999 J. Solid State Chem. 142 247CrossRefGoogle Scholar
  58. 52.
    Cava R J 2004 J. Chem. Soc., Dalton Trans. 2979Google Scholar
  59. 53.
    Itoh M, Shikano M and Shimura T 1995 Phys. Rev. B51 16432Google Scholar
  60. 54.
    Granado E, Huang Q, Lynn J W, Gopalakrishnan J and Ramesha K 2004 Phys. Rev. B70 214416Google Scholar
  61. 55.
    Cotton F A and Wilkinson G 1976 Advanced inorganic chemistry 3rd edn (New Delhi: Wiley Eastern)Google Scholar
  62. 56.
    Lufaso M W and Woodward P M 2004 Acta Crystallogr. B60 10Google Scholar
  63. 57. (a)
    Bhuvanesh N S P and Gopalakrishnan J 1997 J. Mater. Chem. 7 2297 and the references given thereinCrossRefGoogle Scholar
  64. 57. (b)
    Halasyamani P S and Poeppelmeier K R 1998 Chem. Mater. 10 2753CrossRefGoogle Scholar
  65. 58.
    Stoll S L, Stacy A M and Torardi C C 1994 Inorg. Chem. 33 2761CrossRefGoogle Scholar
  66. 59.
    Byeon S-H, Park K and Itoh M 1996 J. Solid State Chem. 121 430CrossRefGoogle Scholar
  67. 60.
    Sivakumar T, Ramesha K, Lofland S E, Ramanujachary K V, Subbanna G N and Gopalakrishnan J 2004 Inorg. Chem. 43 1857CrossRefGoogle Scholar
  68. 61.
    Sivakumar T, Lofland S E, Ramanujachary K V, Ramesha K, Subbanna G N and Gopalakrishnan J 2004 J. Solid State Chem. 177 2635CrossRefGoogle Scholar
  69. 62.
    Keller H, Bussmann-Holder A and Alex Müller K 2008 Mater. Today 11 38CrossRefGoogle Scholar
  70. 63. (a)
    Day P 1981 Int. Rev. Phys. Chem. 1 149CrossRefGoogle Scholar
  71. 63. (b)
    Day P, Hush N S and Clark R J H 2008 Philos. Trans. R. Soc. London, Ser. A 366, 5CrossRefGoogle Scholar
  72. 64.
    Cox D E and Sleight A W 1979 Acta Crystallogr. B35 1Google Scholar
  73. 65.
    Brunschwig B S, Creutz C and Sutin N 2002 Chem. Soc. Rev. 31 168CrossRefGoogle Scholar
  74. 66.
    See for example Creutz C, Ford P C and Meyer T J 2006 Inorg. Chem. 45 7059; Henry Taube: Inorganic chemist extraordinaire CrossRefGoogle Scholar
  75. 67.
    Larsson S 2008 Philos. Trans. R. Soc. London, Ser. A 366, 47CrossRefGoogle Scholar
  76. 68.
    Shenoy V B and Rao C N R 2008 Philos. Trans. R. Soc. London, Ser. A 366, 63CrossRefGoogle Scholar
  77. 69.
    Attfield J P, Bell A M T, Rodriguez-Martinez L M, Greneche J M, Cernik R J, Clarke J F and Perkins D A 1998 Nature (London) 396 655 and the references given thereinCrossRefGoogle Scholar
  78. 70. (a)
    Sleight A W 1988 Proc. Robert A. Welch Found. Conf. Chem. Res. XXXII 123Google Scholar
  79. 70. (b)
    Sleight A W 1988 Science 242 1519CrossRefGoogle Scholar
  80. 71.
    Cava R J 2000 J. Am. Ceram. Soc. 83 5CrossRefGoogle Scholar
  81. 72. (a)
    Simon A 1997 Angew. Chem. Intl. Ed. 36 1788CrossRefGoogle Scholar
  82. 72. (b)
    Deng S, Simon A and Köhler J 2005 Structure and Bonding 114 103Google Scholar
  83. 73. (a)
    Reznik D, Pintschovius L, Ito M, Iikubo S, Sato M, Goka H, Fujita M, Yamada K, Gu G D and Tranquada J M 2006 Nature (London) 440 1170CrossRefGoogle Scholar
  84. 73. (b)
    Zaanen J 2006 Nature (London) 440 1118CrossRefGoogle Scholar
  85. 74.
    Khasanov R, Shengelaya A, Maisuradze A, La Mattina F, Bussmann-Holder A, Keller H and Müller K A 2007 Phys. Rev. Lett. 98 057007Google Scholar
  86. 75.
    Deng S, Simon A and Köhler J 1998 Angew. Chem. Intl. Ed. 37 640CrossRefGoogle Scholar
  87. 76.
    Liu X, Moritomo Y, Nakamura A and Kojima N 1999 J. Phys. Soc. Japan 68 3134CrossRefGoogle Scholar
  88. 77. (a)
    Alonso J A, Martinez-Lope M J, Casais M T, Aranda M A G and Fernandez-Diaz M T 1999 J. Am. Chem. Soc. 121 4754CrossRefGoogle Scholar
  89. 77. (b)
    Alonso J A, Martinez-Lope M J, Casais M T, Garcia-Munoz J L and Fernandez-Diaz M T 2000 Phys. Rev. B61 1756Google Scholar
  90. 78.
    Sleight A W, Gillson J L and Bierstedt P E 1975 Solid State Commun. 17 27CrossRefGoogle Scholar
  91. 79. (a)
    Krebs H 1975 Prog. Solid State Chem. 9 269CrossRefGoogle Scholar
  92. 79. (b)
    Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M and Hosono H 2008 Nature 453 376CrossRefGoogle Scholar
  93. 79. (c)
    Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006Google Scholar
  94. 79. (d)
    Zaanen J 2009 Nature 457 546CrossRefGoogle Scholar
  95. 80.
    Corbett J D 2000 Inorg. Chem. 39 5178CrossRefGoogle Scholar
  96. 81.
    Simon A 1981 Angew. Chem. Intl. Ed. 20 1CrossRefGoogle Scholar
  97. 82.
    Yvon K 1979 Current Topics in Materials Science 3 53 (ed.) E Kaldis (Amsterdam: North-Holland)Google Scholar
  98. 83.
    Rao C N R and Gopalakrishnan J 1987 Acc. Chem. Res. 20 228CrossRefGoogle Scholar
  99. 84.
    Nanjundaswamy K S, Vasanthacharya N Y, Gopalakrishnan J and Rao C N R 1987 Inorg. Chem. 26 4286CrossRefGoogle Scholar
  100. 85.
    Nanjundaswamy K S and Gopalakrishnan J 1987 J. Solid State Chem. 68 188CrossRefGoogle Scholar
  101. 86.
    Torardi C C and McCarley R E 1979 J. Am. Chem. Soc 101 3963CrossRefGoogle Scholar
  102. 87.
    Goodenough J B 1971 Prog. Solid State Chem. 5 145CrossRefGoogle Scholar
  103. 88.
    Rogers D B, Shannon R D, Sleight A W and Gillson J L 1969 Inorg. Chem. 8 841CrossRefGoogle Scholar
  104. 89.
    Jacob K T, Saji V S, Gopalakrishnan J and Waseda Y 2007 J. Chem. Thermodynamics 39 1539CrossRefGoogle Scholar
  105. 90. (a)
    Donohue P C, Katz L and Ward R 1965 Inorg. Chem. 4 306CrossRefGoogle Scholar
  106. 90. (b)
    Hong S-T and Sleight A W 1997 J. Solid State Chem. 128 251CrossRefGoogle Scholar
  107. 91.
    Rijssenbeek J T, Jin R, Zadorozhny Yu, Liu Y, Batlogg B and Cava R J 1999 Phys. Rev. B59 4561Google Scholar
  108. 92.
    Gönen Z S, Gopalakrishnan J, Eichhorn B W and Greene R L 2001 Inorg. Chem. 40 4996CrossRefGoogle Scholar
  109. 93.
    Khalifah P, Nelson K D, Jin R, Mao Z Q, Liu Y, Huang Q, Gao X P A, Ramirez A P and Cava R J 2001 Nature (London) 411 669CrossRefGoogle Scholar
  110. 94.
    Mani R, Fischer M, Joy J E, Gopalakrishnan J and Jansen M 2009 Solid State Sciences 11 189CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations