Advertisement

Journal of Chemical Sciences

, Volume 120, Issue 5, pp 485–491 | Cite as

Preparation and characterization of free-standing pure porphyrin nanoparticles

  • Arun Kumar Perepogu
  • Prakriti Ranjan Bangal
Article

Abstract

Preparation and characterization of absolutely pure and stable nanoparticles of 5,10,15,20-meso-tetrakis phenyl porphyrin (TPP) and catalytically repute 5,10,15,20-meso-tetrakis pentaflurophenyl porphyrin (H2F20TPP) by improved ‘reprecipitation method’ is described. The innovation of this modified ‘reprecipitation method’ lies on the judicial selection of organic solvent and amount of porphyrin solution to be injected in the aqueous media. Exactly similar process produces relatively small nanoparticles for TPP than that of H2F20TPP while the stability of the H2F20TPP nanoparticles is bit higher than nanoparticles of TPP. Absorption and emission spectra reveal that the formation of nanoparticles for both the cases is induced by J-and H-type aggregation. DFT calculations predict the optimized geometries and frontier molecular orbital, which favours the strength of face-to-face interaction with neighbour molecules to be more facile for TPP than that of H2F20TPP helping the latter to form bigger and relatively more stable and free-standing nanoparticles. The use of no other compounds except dichloromethane, a highly volatile organic solvent and respective porphyrins give absolutely pure nanoparticles. This improved method will lead to produce organic nanoparticles of π-conjugated systems easily and efficiently.

Keywords

Nanoparticles tetrakis-pentaflurophenylporphyrin tetrakis-phenylporphyrin reprecipitation method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hulst H C van der 1981 in Light scattering by small particles (New York: Dover Publications Inc.)Google Scholar
  2. 2.
    Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706CrossRefGoogle Scholar
  3. 3.
    Masuhara H and Kawata S 2004 in Nanophotonics (New York: Elsevier) vol 1Google Scholar
  4. 4.
    Masuhara H, Nakanishi H and Sasaki K 2003 in Single organic nanoparticles (Heidelberg: Springer)Google Scholar
  5. 5.
    Kasai H, Nalwa H S, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A and Nakanishi H 1992 Jpn. J. Appl. Phys. Part 2 31 L1132Google Scholar
  6. 6.
    Kasai H, Kamatani H, Yoshikawa Y, Okada S, Oikawa H, Watanabe A, Ito O and Nakanishi H 1997 Chem. Lett. 1181Google Scholar
  7. 7.
    Ai-Dong Peng, De-Bao Xaio, Ying Ma, Wen Sheng and Jain-Nain Yao 2005 Adv. Mater. 17 2070CrossRefGoogle Scholar
  8. 8.
    Drain C M, Smeureanu G, Patel S, Gong X, Garno J and Arijeloye J 2006 New J. Chem. 30 1834CrossRefGoogle Scholar
  9. 9.
    Sun W O and Young S K 2005 Colloids and Surfaces A: Physicochemical and Engineering Aspects 415 257–258Google Scholar
  10. 10.
    Takahashi Y, Kasai H, Nakanishi H and Suzuki T M 2006 Angew Chem. Int. Ed. 45 913CrossRefGoogle Scholar
  11. 11.
    Gesquiere A J, Uwada T, Asahi T, Masuhara H and Barbara Paul F 2005 Nano Lett. 5 1321CrossRefGoogle Scholar
  12. 12.
    Kim H Y, Bjorklund T G, Lim S-H and Bardeen C J 2003 Langmuir. 19 3941CrossRefGoogle Scholar
  13. 13.
    Jin-Song Hu, Yu-Guo Guo, Han-Pu Liang, Li-Jun Wan and Li Jiang 2005 J. Am. Chem. Soc. 127 17090CrossRefGoogle Scholar
  14. 14.
    Zhang X, Zhang Xiaohong, Zou Kai, Lee Chun-Sing and Lee Shuit-Tong 2007 J. Am. Chem. Soc. 129 3527CrossRefGoogle Scholar
  15. 15.
    Fu H B and Yao J N 2001 J. Am. Chem. Soc. 123 1434CrossRefGoogle Scholar
  16. 16.
    Al-Kaysi R O, Muller A M, Ahn Tai-Sang, Lee S and Bardeen C J 2005 Langmuir. 21 7990CrossRefGoogle Scholar
  17. 17.
    Shayu Li, Liming He, Fei Xiong, Yi Li and Guoqiang Y 2004 J. Phys. Chem. B108 10887Google Scholar
  18. 18.
    Wang X, Li Z, Medforth C J and Shelnutt J A 2007 J. Am. Chem. Soc. 129 2440CrossRefGoogle Scholar
  19. 19.
    Gong X, Milic T, Xu C, Batteas J D and Drain C M 2002 J. Am. Chem. Soc. 124 14290CrossRefGoogle Scholar
  20. 20.
    Gaussian 03, Revision-B.03, Gaussian, Inc., Pittsburgh PA, 2003Google Scholar
  21. 21.
    Li L L, Yang C J, Chen W H and Lin K J 2003 Angew. Chem. Ind. Ed. 42 1505CrossRefGoogle Scholar
  22. 22.
    Lin K J 1999 Angew. Chem. Ind. Ed. 38 2730CrossRefGoogle Scholar
  23. 23.
    Diskin-Posner Y, Dahal S and Golberg I 2000 Angew. Chem. Ind. Ed. 39 1288CrossRefGoogle Scholar
  24. 24.
    Li G, Fudickar W, Skupin M, Klyszcz A, Draeger C, Lauer M and Fuhrhop J H 2002 Angew. Chem. Ind. Ed. 41 1828CrossRefGoogle Scholar
  25. 25.
    De Schryver F C, Rowan A E and Nolte R J 1999 Langmuir. 15 3582CrossRefGoogle Scholar
  26. 26.
    Koti A S and Periasamy R N 2002 J. Mater. Chem. 12 2312CrossRefGoogle Scholar
  27. 27.
    van der Boom T, Hayes R T, Zahao Y, Bushard P J, Weiss E A and Wasielewski M R 2002 J. Am. Chem. Soc. 124 9582CrossRefGoogle Scholar
  28. 28.
    Tsuda A, Sakamoto S, Yamaguchi K and Aida T 2003 J. Am. Chem. Soc. 125 15722CrossRefGoogle Scholar
  29. 29.
    Balaban T S, Goddard R, Linke-Schaetzel M and Leng J M 2003 J. Am. Chem. Soc. 125 4233CrossRefGoogle Scholar
  30. 30.
    Takahashi R and Kobuke Y J 2003 J. Am. Chem. Soc. 125 2372CrossRefGoogle Scholar
  31. 31.
    Kuroda Y, Sugou K and Sasaki K 2000 J. Am. Chem. Soc. 122 7833CrossRefGoogle Scholar
  32. 32.
    Koti A S R and Periasamy N 2002 J. Mater. Chem. 12 2312CrossRefGoogle Scholar
  33. 33.
    Doon S C, Shanmughan S, Aston D E and Mettal J L 2005 J. Am. Chem. Soc. 127 5885CrossRefGoogle Scholar
  34. 34.
    Gouterman M 1961 J. Mol. Spectrosc. 6 138CrossRefGoogle Scholar
  35. 35.
    Mulliken R S 1934 J. Chem. Phys. 2 782CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Organic Chemistry Division-IIIndian Institute of Chemical TechnologyHyderabadIndia
  2. 2.Inorganic and Physical Chemistry DivisionIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations