Journal of Biosciences

, 44:100 | Cite as

Does cartilage ERα overexpression correlate with osteoarthritic chondrosenescence? Indications from Labisia pumila OA mitigation

  • Iffah Nadhira Madzuki
  • Seng Fong Lau
  • Nor Aijratul Asikin Mohamad Shalan
  • Nur Iliyani Mohd Ishak
  • Suhaila MohamedEmail author


Chondrosenescence (chondrocyte senescence) and subchondral bone deterioration in osteoarthritic rats were analyzed after treatment with the estrogenic herb Labisia pumila (LP) or diclofenac. Osteoarthritis (OA) was induced in bilaterally ovariectomized (OVX) rats by injecting mono-iodoacetate into the right knee joints. Rats were grouped (n = 8) into non-treated OVX+OA control, OVX+OA + diclofenac (5 mg/kg) (positive control), OVX+OA + LP leaf extract (150 and 300 mg/kg) and healthy sham control. After 8 weeks’ treatment, their conditions were evaluated via serum biomarkers, knee joint histology, bone histomorphometry, protein and mRNA expressions. The LP significantly reduced cartilage erosion, femur bone surface alteration, bone loss and porosity and increased trabecular bone thickness better than diclofenac and the non-treated OA. The cartilage catabolic markers’ (matrix metalloproteinase (MMP)-13, RUNX2, COL10α, ERα, CASP3 and HIF-2α) mRNA expressions were down-regulated and serum bone formation marker, PINP, was increased by LP in a dose-dependent manner. The LP (containing myricetin and gallic acid) showed protection against chondrosenescence, chondrocyte death, hypoxia-induced cartilage catabolism and subchondral bone deterioration. The bone and cartilage protective effects were by suppressing proteases (collagen break-down), bone resorption and upregulating subchondral bone restoration. The cartilage ERα over-expression showed a strong positive correlation with MMP-13, COL10α1, histological, micro-computed tomography evidence for cartilage degradation and chondrosenescence.


ERα diclofenac Labisia pumila osteoarthritis subchondral bone 



We acknowledge the Ministry of Agriculture, Herbal Development Division for the research grant, Universiti Malaysia Perlis for the studentship, Universiti Putra Malaysia for the facilities and Comparative Medicine and Technology (CoMeT) Unit, Institute of Bioscience, Universiti Putra Malaysia for the assistance in performing all-animal-related procedures. This work was supported by the Herbal Development Division, Ministry of Agriculture, Malaysia (Grant No. NH1014D052).

Compliance with ethical standards

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted; Institutional Animal Care and Use Committee (IACUC), Universiti Putra Malaysia approval (UPM/IACUC/AUP-R050/2015).

Supplementary material

12038_2019_9907_MOESM1_ESM.docx (250 kb)
Supplementary material 1 (DOCX 251 kb)


  1. Aigner T, Söder S, Gebhard PM, Mcalinden A and Haag J 2007 Mechanisms of disease: Role of chondrocytes in the pathogenesis of osteoarthritis – structure, chaos and senescence. Rev. Crit. 3 391–399Google Scholar
  2. Akhter MP, Lappe JM, Davies KM and Recker RR 2007 Transmenopausal changes in the trabecular bone structure. Bone 41 111–116CrossRefGoogle Scholar
  3. Arpino V, Brock M and Gill SE 2015 The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 44–46 247–254CrossRefGoogle Scholar
  4. Australian Institute of Health and Welfare 2017 OsteoarthritisGoogle Scholar
  5. Baker N and Tuan RS 2013 The less-often-traveled surface of stem cells: Caveolin-1 and caveolae in stem cells, tissue repair and regeneration. Stem Cell Res. Ther. 4 90CrossRefGoogle Scholar
  6. BenSaad LA, Kim KH, Quah CC, Kim WR and Shahimi M 2017 Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A and B isolated from Punica granatum. BMC Complementary Altern. Med. 17 47CrossRefGoogle Scholar
  7. Bonnet N, Laroche N, Vico L, Dolleans E, Courteix D and Benhamou CL 2009 Assessment of trabecular bone microarchitecture by two different X-ray microcomputed tomographs: A comparative study of the rat distal tibia using Skyscan and Scanco devices. Med. Phys. 36 1286–1297CrossRefGoogle Scholar
  8. Börjesson AE, Lagerquist MK, Liu C, Shao R, Windahl SH, Karlsson C, Sjögren K, Movérare-Skrtic S, Antal MC, Krust A, Mohan S, Chambon P, Sävendahl L and Ohlsson C 2010 The role of estrogen receptor α in growth plate cartilage for longitudinal bone growth. J. Bone Miner. Res. 25 2690–2700. CrossRefPubMedGoogle Scholar
  9. Burkill IH 1935 A dictionary of the economic products of the Malay Peninsula 2nd edition (Kuala Lumpur, Malaysia: Government of Malaysia and Singapore Publication)Google Scholar
  10. Burr DB and Gallant MA 2012 Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8 665–673CrossRefGoogle Scholar
  11. Christgau S, Tankó LB, Cloos PA, Mouritzen U, Christiansen C, Delaissé JM and Høegh-Andersen P 2004 Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM). Menopause 11 Google Scholar
  12. Chua LS, Latiff NA, Lee SY, Lee CT, Sarmidi MR and Aziz RA 2011 Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem. 127 1186–1192CrossRefGoogle Scholar
  13. Chua LS, Lee SY, Abdullah N and Sarmidi MR 2012 Review on Labisia pumila (Kacip Fatimah): Bioactive phytochemicals and skin collagen synthesis promoting herb. Fitoterapia 83 1322–1335CrossRefGoogle Scholar
  14. Engdahl C, Börjesson AE, Forsman HF, Andersson A, Stubelius A, Krust A, Chambon P, Islander U, Ohlsson C, Carlsten H and Lagerquist MK 2014 The role of total and cartilage-specific estrogen receptor alpha expression for the ameliorating effect of estrogen treatment on arthritis. Arthritis Res. Ther. 16 R150CrossRefGoogle Scholar
  15. Epstein S 2005 The roles of bone mineral density, bone turnover, and other properties in reducing fracture risk during antiresorptive therapy. Mayo Clin. Proc. 80 379–388CrossRefGoogle Scholar
  16. Fathilah SN, Nazrun Shuid A, Mohamed N, Muhammad N and Nirwana Soelaiman I 2012 Labisia pumila protects the bone of estrogen-deficient rat model: A histomorphometric study. J. Ethnopharmacol. 142 294–299CrossRefGoogle Scholar
  17. Guzman RE, Evans MG, Bove S, Morenko B and Kilgore K 2003 Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: An animal model of osteoarthritis. Toxicol. Pathol. 31 619–624CrossRefGoogle Scholar
  18. Høegh-Andersen P, Tankó LB, Andersen TL, Lundberg CV, Mo JA, Heegaard A-M, Delaissé J-M and Christgau S 2004 Ovariectomized rats as a model of postmenopausal osteoarthritis: Validation and application. Arthritis Res. Ther. 6 R169–R180CrossRefGoogle Scholar
  19. Intema F, Hazewinkel HAW, Gouwens D, Bijlsma JWJ, Weinans H, Lafeber FPJG and Mastbergen SC 2010 In early OA, thinning of the subchondral plate is directly related to cartilage damage: Results from a canine ACLT-meniscectomy model. Osteoarthritis Cartilage 18 691–698CrossRefGoogle Scholar
  20. Ishiguro N, Ito T, Ito H, Iwata H, Jugessur H, Ionescu M and Poole AR 1999 Relationship of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover: Analyses of synovial fluid from patients with osteoarthritis. Arthritis Rheum. 42 129–136CrossRefGoogle Scholar
  21. Kameda T, Mano H, Yuasa T, Mori Y, Miyazawa K, Shiokawa M, Nakamaru Y, Hiroi E, Hiura K, Kameda A, Yang NN, Hakeda Y and Kumegawa M 1997 Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J. Exp. Med. 186 489–495CrossRefGoogle Scholar
  22. Karimi E, Jaafar HZE and Ahmad S 2011 Phenolics and flavonoids profiling and antioxidant activity of three varieties of Malaysian indigenous medicinal herb Labisia pumila Benth. J. Med. Plants Res. 5 1200–1206Google Scholar
  23. Karimi E, Jaafar HZE and Ahmad S 2013 Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of Labisia pumila Benth: From microwave obtained extracts. BMC Complementary Altern. Med. 13 20CrossRefGoogle Scholar
  24. Liao L, Zhang S, Gu J, Takarada T, Yoneda Y, Huang J, Zhao L, Oh CD, Li J, Wang B, Wang M and Chen D 2017 Deletion of Runx2 in articular chondrocytes decelerates the progression of DMM-induced osteoarthritis in adult mice. Sci. Rep. 7 1–12CrossRefGoogle Scholar
  25. Liu-Bryan R and Terkeltaub R 2015 Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 11 35–44CrossRefGoogle Scholar
  26. Loeser RF, Collins JA and Diekman BO 2016 Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12 412–420CrossRefGoogle Scholar
  27. Madzuki IN, Lau SF, Che Ahmad Tantowi NA, Mohd Ishak NI and Mohamed S 2018 Labisia pumila prevented osteoarthritis cartilage degeneration by attenuating joint inflammation and collagen breakdown in postmenopausal rat model. Inflammopharmacology. CrossRefGoogle Scholar
  28. Maneix L, Servent A, Porée B, Ollitrault D, Branly T, Bigot N, Boujrad N, Flouriot G, Demoor M, Boumediene K, Moslemi S and Galéra P 2014 Up-regulation of type II collagen gene by 17β-estradiol in articular chondrocytes involves Sp1/3, Sox-9, and estrogen receptor α. J. Mol. Med. 92 1179–1200CrossRefGoogle Scholar
  29. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl AJ and Pelletier JP 2016 Osteoarthritis. Nat. Rev. Dis. Primers 2.
  30. Martín-Millán M and Castãneda S 2013 Estrogens, osteoarthritis and inflammation. Jt., Bone, Spine 80 368–373CrossRefGoogle Scholar
  31. Mobasheri A, Matta C, Zákány R and Musumeci G 2015 Chondrosenescence: Definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 80 237–244CrossRefGoogle Scholar
  32. Naito K, Takahashi M, Kushida K, Suzuki M, Ohishi T, Miura M, Inoue T and Nagano A 1999 Measurement of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-1 (TIMP-1) in patients with knee osteoarthritis: Comparison with generalized osteoarthritis. Rheumatology (Oxford) 38 510–515CrossRefGoogle Scholar
  33. Neuhold LA, Killar L, Zhao W, Sung ML, Warner L, Kulik J, Turner J, Wu W, Billinghurst C, Meijers T, Poole AR, Babij P and DeGennaro LJ 2001 Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 107 35–44CrossRefGoogle Scholar
  34. Pritzker KPH, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell K, Salter D and van den Berg WB 2006 Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthritis Cartilage 14 13–29CrossRefGoogle Scholar
  35. Rainsford KD 2006 Current status of the therapeutic uses and actions of the preferential cyclo-oxygenase-2 NSAID, nimesulide. Inflammopharmacology 14 120–137CrossRefGoogle Scholar
  36. Razandi M, Oh P, Pedram A, Schnitzer J and Levin ER 2002 ERs associate with and regulate the production of caveolin: Implications for signaling and cellular actions. Mol. Endocrinol. 16 100–115CrossRefGoogle Scholar
  37. Repo RU and Finlay JB 1977 Survival of articular cartilage after controlled impact. J. Bone Jt. Surg. Am. 59 1068–1076CrossRefGoogle Scholar
  38. Reynard LN and Loughlin J 2013 Insights from human genetic studies into the pathways involved in osteoarthritis. Nat. Rev. Rheumatol. 9 573–583CrossRefGoogle Scholar
  39. Singh GD, Ganjoo M, Youssouf MS, Koul A, Sharma R, Singh S, Sangwan PL, Koul S, Ahamad DB and Johri RK 2009 Sub-acute toxicity evaluation of an aqueous extract of Labisia pumila, a Malaysian herb. Food Chem. Toxicol. 47 2661–2665.CrossRefGoogle Scholar
  40. Tanaka T, Akiyama H, Kanai H, Sato M, Takeda S, Sekiguchi K, Yokoyama T and Kurabayashi M 2002 Endothelial PAS domain protein 1 (EPAS1) induces adrenomedullin gene expression in cardiac myocytes: Role of EPAS1 in an inflammatory response in cardiac myocytes. J. Mol. Cell. Cardiol. 34 739–748CrossRefGoogle Scholar
  41. Tsai CL, Liu TK and Chen TJ 1992 Estrogen and osteoarthritis: A study of synovial estradiol and estradiol receptor binding in human osteoarthritic knees. Biochem. Biophys. Res. Commun. 183 1287–1291CrossRefGoogle Scholar
  42. Ushiyama T, Ueyama H, Inoue K, Ohkubo I and Hukuda S 1999 Expression of genes for estrogen receptors chondrocytes and in human articular. Osteoarthritis Cartilage 7 560–566CrossRefGoogle Scholar
  43. van der Kraan PM and van den Berg WB 2007 Osteophytes: Relevance and biology. Osteoarthritis Cartilage 15 237–244CrossRefGoogle Scholar
  44. Wang P, Li SS and Wang XH 2016 Myricetin exerts anti-osteoarthritic effects in Il-1β stimulated SW1353 cells via regulating matrix metalloproteinases and modulating JNK/P38MAPK/Ap-1/c-FOS and JAK/STAT signalling. Int. J. Pharmacol. 12 440–450CrossRefGoogle Scholar
  45. Wen L, Qu TB, Zhai K, Ding J, Hai Y and Zhou JL 2015 Gallic acid can play a chondroprotective role against AGE-induced osteoarthritis progression. J. Orthop. Sci. 20 734–741CrossRefGoogle Scholar
  46. Yang S, Kim J, Ryu J-H, Oh H, Chun C-H, Kim BJ, Min BH and Chun J-S 2010 Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med. 16 687–693CrossRefGoogle Scholar
  47. Yuan X, Liu Y, Hua X, Deng X, Sun P, Yu C, Chen L, Yu S, Liu S and Pang H 2015 Myricetin ameliorates the symptoms of collagen-induced arthritis in mice by inhibiting cathepsin K activity. Immunopharmacol. Immunotoxicol. 37 513–519CrossRefGoogle Scholar
  48. Zhang X, Yang M, Lin L, Chen P, Ma KT, Zhou CY and Ao YF 2006 Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose-derived stem cells in vitro and in vivo. Calcif. Tissue Int. 79 169–178CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Institute of BioscienceUniversiti Putra MalaysiaUPM SerdangMalaysia
  2. 2.Faculty of Engineering TechnologyUniversiti Malaysia Perlis, UniMAP PerlisKangarMalaysia
  3. 3.Faculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangMalaysia
  4. 4.Faculty of Sport Science and CoachingUniversiti Pendidikan Sultan Idris, UPSITanjong MalimMalaysia

Personalised recommendations