Multifaceted role of keratins in epithelial cell differentiation and transformation

  • Crismita Dmello
  • Saumya S Srivastava
  • Richa Tiwari
  • Pratik R Chaudhari
  • Sharada Sawant
  • Milind M VaidyaEmail author


Keratins, the epithelial-predominant members of the intermediate filament superfamily, are expressed in a pairwise, tissue-specific and differentiation-dependent manner. There are 28 type I and 26 type II keratins, which share a common structure comprising a central coiled coil α-helical rod domain flanked by two nonhelical head and tail domains. These domains harbor sites for major posttranslational modifications like phosphorylation and glycosylation, which govern keratin function and dynamics. Apart from providing structural support, keratins regulate various signaling machinery involved in cell growth, motility, apoptosis etc. However, tissue-specific functions of keratins in relation to cell proliferation and differentiation are still emerging. Altered keratin expression pattern during and after malignant transformation is reported to modulate different signaling pathways involved in tumor progression in a context-dependent fashion. The current review focuses on the literature related to the role of keratins in the regulation of cell proliferation, differentiation and transformation in different types of epithelia.


Cell proliferation differentiation keratins posttranslational modification squamous cell carcinoma transformation 



  1. Adriance MC, Inman JL, Petersen OW and Bissell MJ 2005 Myoepithelial cells: Good fences make good neighbors. Breast Cancer Res. 7 190–197PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alam H, Gangadaran P, Bhate AV, Chaukar DA, Sawant SS, Tiwari R, Bobade J, Kannan S, D’Cruz AK, Kane S and Vaidya MM 2011a Loss of keratin 8 phosphorylation leads to increased tumor progression and correlates with clinico-pathological parameters of OSCC patients. PloS One 6 e27767PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alam H, Kundu ST, Dalal SN and Vaidya MM 2011b Loss of keratins 8 and 18 leads to alterations in alpha6beta4-integrin-mediated signalling and decreased neoplastic progression in an oral-tumour-derived cell line. J. Cell Sci. 124 2096–2106PubMedCrossRefGoogle Scholar
  4. Alam H, Sehgal L, Kundu ST, Dalal SN and Vaidya MM 2011c Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol. Biol. Cell 22 4068–4078PubMedPubMedCentralCrossRefGoogle Scholar
  5. Albers KM 1996 Keratin biochemistry. Clin. Dermatol. 14 309–320PubMedCrossRefGoogle Scholar
  6. Alonso A, Greenlee M, Matts J, Kline J, Davis KJ and Miller RK 2015 Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 72 305–339CrossRefGoogle Scholar
  7. Ambatipudi S, Bhosale PG, Heath E, Pandey M, Kumar G, Kane S, Patil A, Maru GB, Desai RS, Watt FM and Mahimkar MB 2013 Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse. PloS One 8 e70688PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ausch C, Buxhofer-Ausch V, Olszewski U, Schiessel R, Ogris E, Hinterberger W and Hamilton G 2009 Circulating cytokeratin 18 fragment m65 – a potential marker of malignancy in colorectal cancer patients. J. Gastrointestinal Surg.: Official J. Soc. Surg. Alimentary Tract 13 2020–2026Google Scholar
  9. Beil M, Micoulet A, von Wichert G, Paschke S, Walther P, Omary MB, Van Veldhoven PP, Gern U, Wolff-Hieber E, Eggermann J, Waltenberger J, Adler G, Spatz J and Seufferlein T 2003 Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature Cell Biology. 5 803–811PubMedCrossRefGoogle Scholar
  10. Block RJ 1951 Chemical classification of keratins. Ann. New York Acad. Sci. 53 608–612CrossRefGoogle Scholar
  11. Bloor BK, Seddon SV and Morgan PR 2000 Gene expression of differentiation-specific keratins (K4, K13, K1 and K10) in oral non-dysplastic keratoses and lichen planus. J. Oral Pathol. Med.: Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. of Oral Pathol. 29 376–384CrossRefGoogle Scholar
  12. Bloor BK, Seddon SV and Morgan PR 2001 Gene expression of differentiation-specific keratins in oral epithelial dysplasia and squamous cell carcinoma. Oral Oncol. 37 251–261PubMedCrossRefGoogle Scholar
  13. Bonora M, Wieckowsk MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L and Pinton P 2015 Molecular mechanisms of cell death: Central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34 1608PubMedCrossRefGoogle Scholar
  14. Brown CH 1950 Keratins in invertebrates. Nature 166 439PubMedCrossRefGoogle Scholar
  15. Buhler H and Schaller G 2005 Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo. Mol. Cancer Res.: MCR 3 365–371PubMedCrossRefGoogle Scholar
  16. Busch T, Armacki M, Eiseler T, Joodi G, Temme C, Jansen J, von Wichert G, Omary MB, Spatz J and Seufferlein T 2012 Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. J. Cell Sci. 125 2148–2159PubMedPubMedCentralCrossRefGoogle Scholar
  17. Candi E, Tarcsa E, Digiovanna JJ, Compton JG, Elias PM, Marekov LN and Steinert PM 1998 A highly conserved lysine residue on the head domain of type II keratins is essential for the attachment of keratin intermediate filaments to the cornified cell envelope through isopeptide crosslinking by transglutaminases. Proc. Natl. Acad. Sci. USA 95 2067–2072PubMedCrossRefGoogle Scholar
  18. Casanova ML, Bravo A, Martinez-Palacio J, Fernandez-Acenero MJ, Villanueva C, Larcher F, Conti CJ and Jorcano JL 2004 Epidermal abnormalities and increased malignancy of skin tumors in human epidermal keratin 8-expressing transgenic mice. FASEB J. 18 1556–1558PubMedCrossRefGoogle Scholar
  19. Chaudhari PR and Vaidya MM 2015 Versatile hemidesmosomal linker proteins: structure and function. Histol. Histopathol. 30 425–434PubMedGoogle Scholar
  20. Chen J, Cheng X, Merched-Sauvage M, Caulin C, Roop DR and Koch PJ 2006 An unexpected role for keratin 10 end domains in susceptibility to skin cancer. J. Cell Sci. 119 5067–5076PubMedCrossRefGoogle Scholar
  21. Chen L, Wang Y, Zhao L, Chen W, Dong C, Zhao X and Li X 2014 Hsp74, a potential bladder cancer marker, has direct interaction with keratin 1. J. Immunol. Res. 2014 492849PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chisholm JC and Houliston E 1987 Cytokeratin filament assembly in the preimplantation mouse embryo. Development 101 565–582PubMedGoogle Scholar
  23. Chou CF, Smith AJ and Omary MB 1992 Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J. Biol. Chem. 267 3901–3906PubMedGoogle Scholar
  24. Coulombe PA and Omary MB 2002 ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14 110–122PubMedCrossRefGoogle Scholar
  25. Coulombe PA, Tong X, Mazzalupo S, Wang Z and Wong P 2004 Great promises yet to be fulfilled: Defining keratin intermediate filament function in vivo. Eur. J. Cell Biol. 83 735–746PubMedCrossRefGoogle Scholar
  26. Dakir EH, Feigenbaum L and Linnoila RI 2008 Constitutive expression of human keratin 14 gene in mouse lung induces premalignant lesions and squamous differentiation. Carcinogenesis 29 2377–2384CrossRefGoogle Scholar
  27. Desai BV, Harmon RM and Green KJ 2009 Desmosomes at a glance. J. Cell Sci. 122 4401–4407PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dmello C, Sawant S, Alam H, Gangadaran P, Mogre S, Tiwari R, D’Souza Z, Narkar M, Thorat R, Patil K, Chaukar D, Kane S and Vaidya M 2017 Vimentin regulates differentiation switch via modulation of keratin 14 levels and their expression together correlates with poor prognosis in oral cancer patients. PloS One 12 e0172559PubMedPubMedCentralCrossRefGoogle Scholar
  29. Eckert RL 1988 Sequence of the human 40-kDa keratin reveals an unusual structure with very high sequence identity to the corresponding bovine keratin. Proc. Natl. Acad. Sci. USA 85 1114–1118PubMedCrossRefGoogle Scholar
  30. Fortier AM, Asselin E and Cadrin M 2013 Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J.Biol. Chem. 288 11555–11571PubMedPubMedCentralCrossRefGoogle Scholar
  31. Franke WW, Schmid E, Schiller DL, Winter S, Jarasch ED, Moll R, Denk H, Jackson BW and Illmensee K 1982 Differentiation-related patterns of expression of proteins of intermediate-size filaments in tissues and cultured cells. Cold Spring Harb. Symp. Quant. Biol. 46 431–453PubMedCrossRefGoogle Scholar
  32. Fuchs E and Green H 1980 Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19 1033–1042PubMedCrossRefGoogle Scholar
  33. Gao J, Lv F, Li J, Wu Z and Qi J 2014 Serum cytokeratin 19 fragment, CK19–2G2, as a newly identified biomarker for lung cancer. PloS One 9 e101979PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gilbert S, Loranger A and Marceau N 2004 Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol. Cell. Biol. 24 7072–7081PubMedPubMedCentralCrossRefGoogle Scholar
  35. Harbaum L, Pollheimer MJ, Kornprat P, Lindtner RA, Schlemmer A, Rehak P and Langner C 2012 Keratin 20 – a diagnostic and prognostic marker in colorectal cancer? Histol. Histopathol. 27 347–356PubMedGoogle Scholar
  36. He T, Stepulak A, Holmstrom TH, Omary MB and Eriksson JE 2002 The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem. 277 10767–10774PubMedCrossRefGoogle Scholar
  37. Hermeking H and Benzinger A 2006 14-3-3 proteins in cell cycle regulation. Sem. Cancer Biol. 16 183–192CrossRefGoogle Scholar
  38. Iyer SV, Dange PP, Alam H, Sawant SS, Ingle AD, Borges AM, Shirsat NV, Dalal SN and Vaidya MM 2013 Understanding the role of keratins 8 and 18 in neoplastic potential of breast cancer derived cell lines. PloS One 8 e53532PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jaitovich A, Mehta S, Na N, Ciechanover A, Goldman RD and Ridge KM 2008 Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells. J. Biol. Chem. 283 25348–25355PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jones JC, Hopkinson SB and Goldfinger LE 1998 Structure and assembly of hemidesmosomes. BioEssays: News and Rev. Mol. Cell. Dev. Biol. 20 488–494Google Scholar
  41. Ju JH, Yang W, Lee KM, Oh S, Nam K, Shim S, Shin SY, Gye MC, Chu IS and Shin I 2013 Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clin. Cancer Res.: Official J. Am. Assoc. Cancer Res. 19 4335–4346Google Scholar
  42. Kanojia D, Sawant SS, Borges AM, Ingle AD and Vaidya MM 2012 Alterations in keratins and associated proteins during 4- Nitroquinoline-1-oxide induced rat oral carcinogenesis. J. Carcinogenesis 11 14CrossRefGoogle Scholar
  43. Khapare N, Kundu ST, Sehgal L, Sawant M, Priya R, Gosavi P, Gupta N, Alam H, Karkhanis M, Naik N, Vaidya MM and Dalal SN 2012 Plakophilin3 loss leads to an increase in PRL3 levels promoting K8 dephosphorylation, which is required for transformation and metastasis. PloS One 7 e38561PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kim S and Coulombe PA 2007 Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21 1581–1597PubMedCrossRefGoogle Scholar
  45. Kim S, Wong P and Coulombe PA 2006 A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441 362–365PubMedCrossRefGoogle Scholar
  46. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW and Gygi SP 2011 Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44 325–340PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kim HJ, Choi WJ and Lee CH 2015 Phosphorylation and reorganization of keratin networks: Implications for carcinogenesis and epithelial mesenchymal transition. Biomolecules Therapeutics 23 301–312PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kirfel J, Magin TM and Reichelt J 2003 Keratins: A structural scaffold with emerging functions. Cell. Mol. Life Sci.: CMLS. 60 56–71CrossRefGoogle Scholar
  49. Koch PJ and Roop DR 2004 The role of keratins in epidermal development and homeostasis – Going beyond the obvious. J. Invest. Dermatol. 123 x–xiPubMedCrossRefGoogle Scholar
  50. Konig K, Meder L, Kroger C, Diehl L, Florin A, Rommerscheidt-Fuss U, Kahl P, Wardelmann E, Magin TM, Buettner R and Heukamp LC 2013 Loss of the keratin cytoskeleton is not sufficient to induce epithelial mesenchymal transition in a novel KRAS driven sporadic lung cancer mouse model. PloS One 8 e57996PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ku NO and Omary MB 1995 Identification and mutational analysis of the glycosylation sites of human keratin 18. J. Biol. Chem. 270 11820–11827PubMedCrossRefGoogle Scholar
  52. Ku NO, Zhou X, Toivola DM and Omary MB 1999 The cytoskeleton of digestive epithelia in health and disease. Am. J. Physiol. 277 G1108–G1137PubMedGoogle Scholar
  53. Ku NO, Toivola DM, Strnad P and Omary MB 2010 Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat. Cell Biol. 12 876–885PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kuchma MH, Kim JH, Muller MT and Arlen PA 2012 Prostate cancer cell surface-associated keratin 8 and its implications for enhanced plasmin activity. Protein J. 31 195–205PubMedCrossRefGoogle Scholar
  55. Lee EJ, Park MK, Kim HJ, Kim EJ, Kang GJ, Byun HJ and Lee CH 2016 Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells. Biochim. Biophys. Acta 1863 1157–1169PubMedCrossRefGoogle Scholar
  56. Liu L, Dopping-Hepenstal PJ, Lovell PA, Michael M, Horn H, Fong K, Lai-Cheong JE, Mellerio JE, Parsons M and McGrath JA 2012 Autosomal recessive epidermolysis bullosa simplex due to loss of BPAG1-e expression. J. Invest. Dermatol. 132 742–744PubMedCrossRefGoogle Scholar
  57. Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E and Fuchs E 1995 The basal keratin network of stratified squamous epithelia: Defining K15 function in the absence of K14. J. Cell Biol. 129 1329–1344PubMedCrossRefGoogle Scholar
  58. Loffek S, Woll S, Hohfeld J, Leube RE, Has C, Bruckner-Tuderman L and Magin TM 2010 The ubiquitin ligase CHIP/STUB1 targets mutant keratins for degradation. Hum. Mutat. 31 466–476PubMedCrossRefGoogle Scholar
  59. Magin TM, Vijayaraj P and Leube RE 2007 Structural and regulatory functions of keratins. Exp. Cell Res. 313 2021–2032PubMedCrossRefGoogle Scholar
  60. Makar IA, Havryliak VV and Sedilo HM 2007 Genetic and biochemical aspects of keratin synthesis by hair follicles. TSitol. I Genet. 41 75–79Google Scholar
  61. Matros E, Bailey G, Clancy T, Zinner M, Ashley S, Whang E and Redston M 2006 Cytokeratin 20 expression identifies a subtype of pancreatic adenocarcinoma with decreased overall survival. Cancer 106 693–702PubMedCrossRefGoogle Scholar
  62. McGowan K and Coulombe PA 1998a The wound repair-associated keratins 6, 16, and 17. Insights into the role of intermediate filaments in specifying keratinocyte cytoarchitecture. Sub-cellular Biochem. 31 173–204Google Scholar
  63. McGowan KM and Coulombe PA 1998b Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J. Cell Biol. 143 469–486PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mikami T, Cheng J, Maruyama S, Kobayashi T, Funayama A, Yamazaki M, Adeola HA, Wu L, Shingaki S, Saito C and Saku T 2011 Emergence of keratin 17 vs. Loss of keratin 13: Their reciprocal immunohistochemical profiles in oral carcinoma in situ. Oral Oncol. 47 497–503PubMedCrossRefGoogle Scholar
  65. Ming M, Qiang L, Zhao B and He YY 2014 Mammalian SIRT2 inhibits keratin 19 expression and is a tumor suppressor in skin. Exp. Dermatol. 23 207–209PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mizuuchi E, Semba S, Kodama Y and Yokozaki H 2009 Down-modulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression. Int. J. Cancer 124 1802–1810PubMedCrossRefGoogle Scholar
  67. Moll R, Franke WW, Schiller DL, Geiger B and Krepler R 1982 The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell 31 11–24PubMedCrossRefGoogle Scholar
  68. Moll R, Achtstatter T, Becht E, Balcarova-Stander J, Ittensohn M and Franke WW 1988 Cytokeratins in normal and malignant transitional epithelium. Maintenance of expression of urothelial differentiation features in transitional cell carcinomas and bladder carcinoma cell culture lines. Am. J. Pathol. 132 123–144PubMedPubMedCentralGoogle Scholar
  69. Moll R, Schiller DL and Franke WW 1990 Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J. Cell Biol. 111 567–580PubMedCrossRefGoogle Scholar
  70. Nemes Z, Petrovski G and Fesus L 2005 Tools for the detection and quantitation of protein transglutamination. Anal. Biochem. 342 1–10PubMedCrossRefGoogle Scholar
  71. O’Farrell PZ, Goodman HM and O’Farrell PH 1977 High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12 1133–1141PubMedCrossRefGoogle Scholar
  72. Omary MB, Ku NO, Liao J and Price D 1998 Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell Biochem. 31 105–140PubMedGoogle Scholar
  73. Omary MB, Coulombe PA and McLean WH 2004 Intermediate filament proteins and their associated diseases. NewEngl. J. Med. 351 2087–2100CrossRefGoogle Scholar
  74. Omary MB, Ku NO, Tao GZ, Toivola DM and Liao J 2006 ‘Heads and tails’ of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci. 31 383–394PubMedCrossRefGoogle Scholar
  75. Paladini RD and Coulombe PA 1998 Directed expression of keratin 16 to the progenitor basal cells of transgenic mouse skin delays skin maturation. J. Cell Biol. 142 1035–1051PubMedPubMedCentralCrossRefGoogle Scholar
  76. Paramio JM 1999 A role for phosphorylation in the dynamics of keratin intermediate filaments. Eur. J. Cell Biol. 78 33–43PubMedCrossRefGoogle Scholar
  77. Paramio JM, Casanova ML, Segrelles C, Mittnacht S, Lane EB and Jorcano JL 1999 Modulation of cell proliferation by cytokeratins K10 and K16. Mol. Cell. Biol. 19 3086–3094PubMedPubMedCentralCrossRefGoogle Scholar
  78. Paramio JM, Segrelles C, Ruiz S and Jorcano JL 2001 Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol. Cell. Biol. 21 7449–7459PubMedPubMedCentralCrossRefGoogle Scholar
  79. Parekh HK and Simpkins H 1995 The differential expression of cytokeratin 18 in cisplatin-sensitive and -resistant human ovarian adenocarcinoma cells and its association with drug sensitivity. Cancer Res. 55 5203–5206PubMedGoogle Scholar
  80. Pekny M and Lane EB 2007 Intermediate filaments and stress. Exp. Cell Res. 313 2244–2254PubMedCrossRefGoogle Scholar
  81. Peters B, Kirfel J, Bussow H, Vidal M and Magin TM 2001 Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol. Biol. Cell 12 1775–1789PubMedPubMedCentralCrossRefGoogle Scholar
  82. Pohl M, Olsen KE, Holst R, Donnem T, Busund LT, Bremnes RM, Al-Saad S, Andersen S, Richardsen E, Ditzel HJ and Hansen O 2016 Keratin 34betaE12/keratin7 expression is a prognostic factor of cancer-specific and overall survival in patients with early stage non-small cell lung cancer. Acta Oncol. 55 167–177PubMedCrossRefGoogle Scholar
  83. Porter RM and Lane EB 2003 Phenotypes, genotypes and their contribution to understanding keratin function. Trends Genet. 19 278–285PubMedCrossRefGoogle Scholar
  84. Reichelt J and Magin TM 2002 Hyperproliferation, induction of c-Myc and 14-3-3sigma, but no cell fragility in keratin-10-null mice. J. Cell Sci. 115 2639–2650PubMedGoogle Scholar
  85. Reichelt J, Breiden B, Sandhoff K and Magin TM 2004a Loss of keratin 10 is accompanied by increased sebocyte proliferation and differentiation. Eur. J. Cell Biol. 83 747–759PubMedCrossRefGoogle Scholar
  86. Reichelt J, Furstenberger G and Magin TM 2004b Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice. J. Invest. Dermatol. 123 973–981PubMedCrossRefGoogle Scholar
  87. Ricciardelli C, Lokman NA, Pyragius CE, Ween MP, Macpherson AM, Ruszkiewicz A, Hoffmann P and Oehler MK 2017 Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance. Oncotarget 8 17819–17832PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rogel MR, Jaitovich A and Ridge KM 2010 The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation. Proc. Am. Thorac. Soc. 7 71–76PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rolli CG, Seufferlein T, Kemkemer R and Spatz JP 2010 Impact of tumor cell cytoskeleton organization on invasiveness and migration: A microchannel-based approach. PloS One 5 e8726PubMedPubMedCentralCrossRefGoogle Scholar
  90. Roop DR, Krieg TM, Mehrel T, Cheng CK and Yuspa SH 1988 Transcriptional control of high molecular weight keratin gene expression in multistage mouse skin carcinogenesis. Cancer Res. 48 3245–3252PubMedGoogle Scholar
  91. Rotty JD and Coulombe PA 2012 A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. J. Cell Biol. 197 381–389PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rotty JD, Hart GW and Coulombe PA 2010 Stressing the role of O-GlcNAc: Linking cell survival to keratin modification. Nat. Cell Biol. 12 847–849PubMedCrossRefGoogle Scholar
  93. Sankar S, Bell R, Stephens B, Zhuo R, Sharma S, Bearss DJ and Lessnick SL 2013 Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. Oncogene 32 5089–5100PubMedCrossRefGoogle Scholar
  94. Santos M, Paramio JM, Bravo A, Ramirez A and Jorcano JL 2002 The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. J. Biol. Chem. 277 19122–19130PubMedCrossRefGoogle Scholar
  95. Santos M, Rio P, Ruiz S, Martinez-Palacio J, Segrelles C, Lara MF, Segovia JC and Paramio JM 2005 Altered T cell differentiation and notch signaling induced by the ectopic expression of keratin K10 in the epithelial cells of the thymus. J. Cell. Biochem. 95 543–558PubMedCrossRefGoogle Scholar
  96. Sawant SS, Chaukar DA, Joshi SS, Dange PP, Kannan S, Kane S, D’Cruz and AK and Vaidya MM 2011 Prognostic value of tissue polypeptide antigen in oral squamous cell carcinoma. Oral Oncol. 47 114–120PubMedCrossRefGoogle Scholar
  97. Sawant S, Vaidya M, Chaukar D, Gangadaran P, Singh AK, Rajadhyax S, Kannan S, Kane S, Pagare S and Kannan R 2014 Clinicopathological features and prognostic implications of loss of K5 and gain of K1, K8 and K18 in oral potentially malignant lesions and squamous cell carcinomas: An immunohistochemical analysis. Edorium J. Tumor Biol. 1 1–22Google Scholar
  98. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA and Wright MW 2006 New consensus nomenclature for mammalian keratins. J. Cell Biol. 174 169–174PubMedPubMedCentralCrossRefGoogle Scholar
  99. Snider NT and Omary MB 2014 Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15 163–177PubMedPubMedCentralCrossRefGoogle Scholar
  100. Snider NT, Weerasinghe SV, Iniguez-Lluhi JA, Herrmann H and Omary MB 2011 Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation. J. Biol. Chem. 286 2273–2284PubMedCrossRefGoogle Scholar
  101. Snider NT, Leonard JM, Kwan R, Griggs NW, Rui L and Omary MB 2013 Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. J. Cell Biol. 200 241–247PubMedPubMedCentralCrossRefGoogle Scholar
  102. Srivastava SS, Alam H, Patil SJ, Shrinivasan R, Raikundalia S, Chaudhari PR and Vaidya MM 2018 Keratin 5/14mediated cell differentiation and transformation are regulated by TAp63 and Notch1 in oral squamous cell carcinomaderived cells. Oncol. Rep. 39 2393–2401PubMedGoogle Scholar
  103. Steinert PM, Wantz ML and Idler WW 1982 O-phosphoserine content of intermediate filament subunits. Biochemistry 21 177–183PubMedCrossRefGoogle Scholar
  104. Steinert PM, Steven AC and Roop DR 1985 The molecular biology of intermediate filaments. Cell 42 411–420PubMedCrossRefGoogle Scholar
  105. Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M and Seufferlein T 2005 Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1 15–30PubMedCrossRefGoogle Scholar
  106. Takahashi K, Paladini RD and Coulombe PA 1995 Cloning and characterization of multiple human genes and cDNAs encoding highly related type II keratin 6 isoforms. J. Biol. Chem. 270 18581–18592PubMedCrossRefGoogle Scholar
  107. Tamiji S, Beauvillain JC, Mortier L, Jouy N, Tual M, Delaporte E, Formstecher P, Marchetti P and Polakowska R 2005 Induction of apoptosis-like mitochondrial impairment triggers antioxidant and Bcl-2-dependent keratinocyte differentiation. J. Invest. Dermatol. 125 647–658PubMedCrossRefGoogle Scholar
  108. Tanaka T and Iino M 2015 Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal 27 1110–1119PubMedCrossRefGoogle Scholar
  109. Tao GZ, Toivola DM, Zhou Q, Strnad P, Xu B, Michie SA and Omary MB 2006 Protein phosphatase-2A associates with and dephosphorylates keratin 8 after hyposmotic stress in a site- and cell-specific manner. J. Cell Sci. 119 1425–1432PubMedCrossRefGoogle Scholar
  110. Tiwari R, Sahu I, Soni BL, Sathe GJ, Datta KK, Thapa P, Sinha S, Vadivel CK, Dhaka B, Gowda H and Vaidya MM 2017 Quantitative phosphoproteomic analysis reveals system-wide signaling pathways regulated by site-specific phosphorylation of keratin-8 in skin squamous cell carcinoma derived cell line. Proteomics 17 CrossRefGoogle Scholar
  111. Toivola DM, Goldman RD, Garrod DR and Eriksson JE 1997 Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. J. Cell Sci. 110 23–33PubMedGoogle Scholar
  112. Toivola DM, Tao GZ, Habtezion A, Liao J and Omary MB 2005 Cellular integrity plus: Organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 15 608–617PubMedCrossRefGoogle Scholar
  113. Tomlinson DJ, Mulling CH and Fakler TM 2004 Invited review: Formation of keratins in the bovine claw: Roles of hormones, minerals, and vitamins in functional claw integrity. J. Dairy Sci. 87 797–809PubMedCrossRefGoogle Scholar
  114. Vaidya MM and Kanojia D 2007 Keratins: Markers of cell differentiation or regulators of cell differentiation? J. Biosci. 32 629–634PubMedCrossRefGoogle Scholar
  115. van de Rijn M, Perou CM, Tibshirani R, Haas P, Kallioniemi O, Kononen J, Torhorst J, Sauter G, Zuber M, Kochli OR, Mross F, Dieterich H, Seitz R, Ross D, Botstein D and Brown P 2002 Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am. J. Pathol. 161 1991–1996PubMedPubMedCentralCrossRefGoogle Scholar
  116. Verdin E and Ott M 2015 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16 258–264PubMedCrossRefGoogle Scholar
  117. Wiche G 1998 Role of plectin in cytoskeleton organization and dynamics. J. Cell Sci. 111 2477–2486PubMedGoogle Scholar
  118. Wu H, Wang K, Liu W and Hao Q 2014 PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression. Biochem. Biophys. Res. Commun. 444 141–146PubMedCrossRefGoogle Scholar
  119. Wu H, Wang K, Liu W and Hao Q 2015 Recombinant adenovirus-mediated overexpression of PTEN and KRT10 improves cisplatin resistance of ovarian cancer in vitro and in vivo. Genet. Mol. Res.: GMR 14 6591–6597PubMedCrossRefGoogle Scholar
  120. Yan X, Shi Y, Kou B, Zhu Z, Chai J, Chen D and Guo H 2016 Keratin 18 phosphorylation increases autophagy of colorectal cancer HCT116 cells and enhanced its sensitivity to oxaliplatin. Xi bao yu fen zi mian yi xue za zhi = Chinese J. Cell. Mol. Immunol. 32 34–38Google Scholar
  121. Yang L, Fan X, Cui T, Dang E and Wang G 2017 Nrf2 promotes keratinocyte proliferation in psoriasis through up-regulation of keratin 6, keratin 16, and keratin 17. J. Invest. Dermatol. 137 2168–2176PubMedCrossRefGoogle Scholar
  122. Yi W, Peng J, Zhang Y, Fu F, Zou Q and Tang Y 2013 Differential protein expressions in breast cancer between drug sensitive tissues and drug resistant tissues. Gland Surg. 2 62–68PubMedPubMedCentralGoogle Scholar
  123. Zhang N, Zhang R, Zou K, Yu W, Guo W, Gao Y, Li J, Li M, Tai Y, Huang W, Song C, Deng W and Cui X 2017 Keratin 23 promotes telomerase reverse transcriptase expression and human colorectal cancer growth. Cell Death Disease 8 e2961PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zhou Q, Snider NT, Liao J, Li DH, Hong A, Ku NO, Cartwright CA and Omary MB 2010 Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PloS One 5 e13538PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Vaidya LaboratoryAdvanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC)Kharghar, Navi MumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations