Advertisement

Journal of Biosciences

, Volume 43, Issue 5, pp 1037–1054 | Cite as

Computational neuroscience and neuroinformatics: Recent progress and resources

  • Losiana Nayak
  • Abhijit Dasgupta
  • Ritankar Das
  • Kuntal Ghosh
  • Rajat K DeEmail author
Research Resource
  • 108 Downloads

Abstract

The human brain and its temporal behavior correlated with development, structure, and function is a complex natural system even for its own kind. Coding and automation are necessary for modeling, analyzing and understanding the 86.1 ± 8.1 billion neurons, an almost equal number of non-neuronal glial cells, and the neuronal networks of the human brain comprising about 100 trillion connections. ‘Computational neuroscience’ which is heavily dependent on biology, physics, mathematics and computation addresses such problems while the archival, retrieval and merging of the huge amount of generated data in the form of clinical records, scientific literature, and specialized databases are carried out by ‘neuroinformatics’ approaches. Neuroinformatics is thus an interface between computer science and experimental neuroscience. This article provides an introduction to computational neuroscience and neuroinformatics fields along with their state-of-the-art tools, software, and resources. Furthermore, it describes a few innovative applications of these fields in predicting and detecting brain network organization, complex brain disorder diagnosis, large-scale 3D simulation of the brain, brain–computer, and brain-to-brain interfaces. It provides an integrated overview of the fields in a non-technical way, appropriate for broad general readership. Moreover, the article is an updated unified resource of the existing knowledge and sources for researchers stepping into these fields.

Keywords

Brain–computer–music interface (BCMI) Brainnet brain-to-brain interface (B2B) BrainX3 Connectome 

Notes

Acknowledgements

LN acknowledges University Grants Commission, India for a UGC Post-Doctoral Fellowship (No. F.15-1/2013-14/PDFWM-2013-14-GE-ORI-19068(SA-II)). AD acknowledges Digital India Corporation (formerly Media Lab Asia), Ministry of Electronics and Information Technology, Government of India, for providing him a Senior Research Fellowship under the Visvesvaraya Ph.D. scheme for Electronics and IT. RD acknowledges Council of Scientific and Industrial Research, India, for providing him a Senior Research Fellowship (No. 09/093(0182)/2018 EMR-I).

References

  1. Achard S and Bullmore E 2007 Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3 e17PubMedPubMedCentralGoogle Scholar
  2. Achard, S, Salvador R, Whitcher B, Suckling J and Bullmore E 2006 A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26 63–72PubMedGoogle Scholar
  3. Adelman G 2010 The neurosciences research program at MIT and the beginning of the modern field of neuroscience. J. Hist. Neurosci. 19 15–23PubMedGoogle Scholar
  4. Aguiar P, Sousa M and Szucs P 2013 Versatile morphometric analysis and visualization of the three-dimensional structure of neurons. Neuroinformatics 11 393–403PubMedGoogle Scholar
  5. Andrzejak RG, Schindler K and Rummel C 2012 Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E Stat. Nonlin. Soft Matr. Phys. 86 046206Google Scholar
  6. Armstrong KM, Fitzgerald JK and Moore T 2006 Changes in visual receptive fields with microstimulation of frontal cortex. Neuron 50 791–798PubMedGoogle Scholar
  7. Arsiwalla X, Zucca R, Betella A, Martinez E, Dalmazzo D, Omedas P, Deco G and Verschure P 2015 Network dynamics with BrainX(3) a large-scale simulation of the human brain network with real-time interaction. Front. Neuroinform. 9 02PubMedPubMedCentralGoogle Scholar
  8. Astolfi L, de Vico Fallani F, Cincotti F, Mattia D, Marciani MG, Bufalari S, Salinari S, Colosimo A, Ding L, et al. 2007 Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory. Psychophysiology 44 880–893PubMedGoogle Scholar
  9. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob W Filho, Lent R et al. 2009 Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513 532–541PubMedGoogle Scholar
  10. Bartolomei F, Bettus G, Stam CJ and Guye M 2013 Interictal network properties in mesial temporal lobe epilepsy a graph theoretical study from intracerebral recordings. Clin. Neurophysiol. 124 2345–2353PubMedGoogle Scholar
  11. Bassett DS, Andreas M-L, Achard S, Duke T and Bullmore E 2006 Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. USA 103 19518–19523PubMedGoogle Scholar
  12. Bassett DS and Bullmore ET 2009 Human brain networks in health and disease. Curr. Opin. Neurol. 22 340–347PubMedPubMedCentralGoogle Scholar
  13. Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM and Grafton ST 2011 Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 108 7641–7646PubMedGoogle Scholar
  14. Battaglia, D, Witt A, Wolf F and Geisel T 2012 Dynamic effective connectivity of inter-areal brain circuits. PLoS Comput. Biol. 8 e1002438PubMedPubMedCentralGoogle Scholar
  15. Bechtel W 2008 Mental mechanisms philosophical perspectives on cognitive neuroscience (Hove, Psychology)Google Scholar
  16. Beltrame F, Koslow S, Gardner D, Ascoli G and Usai S 2000 Neuroinformatics as a mega science-a panel discussion. IEEE EMBS International Conference on Information Technology Applications in Biomedicine 314Google Scholar
  17. Berlinski J, Rowe C, Chavez DM, Jordan NM, Tanna D, Hoang RV, Dascalu SM, Bray L CJ et al. 2014 NeoCortical Builder A Web Based Front End for NCS. Proceedings. of the 27th International Conference on Computer Applications in Industry and Engineering (CAINE-2014) Google Scholar
  18. Bhattacharya J 2001 Reduced degree of long-range phase synchrony in pathological human brain. Acta. Neurobiol. Exp. 61 309–318Google Scholar
  19. Birn RM, Cox RW and Bandettini PA 2002 Detection versus estimation in event-related fMRI choosing the optimal stimulus timing. Neuroimage 15 252–264PubMedGoogle Scholar
  20. Bjaalie JG and Grillner S 2007 Global neuroinformatics the International Neuroinformatics Coordinating Facility. J. Neurosci. 27 3613–3615PubMedGoogle Scholar
  21. Bota, M, Dong HW and Swanson LW 2003 From gene networks to brain networks. Nat. Neurosci. 6 795–799PubMedGoogle Scholar
  22. Bower JM and Beeman D 1998 The. book of GENESIS exploring realistic neural models with the GEneral. NEural. SImulation. System (Santa Clara, Calif., TELOS)Google Scholar
  23. Braitenberg V and Schuz A A 1991 Anatomy of the cortex statistics and geometry (Berlin, Springer)Google Scholar
  24. Bressler SL and Menon V 2010 Large-scale brain networks in cognition emerging methods and principles. Trends. Cogn. Sci. 14 277–290PubMedGoogle Scholar
  25. Bressler SL, Tang W, Sylvester CM, Shulman GL and Corbetta M 2008 Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 28 10056–10061PubMedPubMedCentralGoogle Scholar
  26. Bressler SL and Tognoli E 2006 Operational principles of neurocognitive networks. Int. J. Psychophysiol. 60 139–148PubMedGoogle Scholar
  27. Brette, R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, et al. 2007 Simulation of networks of spiking neurons a review of tools and strategies. J. Comput. Neurosci. 23 349–398PubMedPubMedCentralGoogle Scholar
  28. Brown MR, Sidhu GS, Greiner R, Asgarian N, Bastani M, Silverstone PH, Greenshaw AJ and Dursun SM 2012 ADHD-200 Global Competition diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front. Syst. Neurosci. 6 69PubMedPubMedCentralGoogle Scholar
  29. Bullmore E and Sporns O 2009 Complex brain networks graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10 186–198PubMedGoogle Scholar
  30. Bullmore E and Sporns O 2012 The economy of brain network organization. Nat. Rev. Neurosci. 13 336–349PubMedGoogle Scholar
  31. Burianova HAR McIntosh and Grady CL 2010 A common functional brain network for autobiographical, episodic, and semantic memory retrieval. Neuroimage 49 865–874PubMedGoogle Scholar
  32. Cannon RC, O'Donnell C and Nolan MF 2010 Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput. Biol. 6(8) e1000886.  https://doi.org/10.1371/journal.pcbi.1000886 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Carnevale N and Hines M 2006 The. NEURON book (Cambridge University Press)Google Scholar
  34. Chen Z, Liu M, Gross DW and Beaulieu C 2013 Graph theoretical analysis of developmental patterns of the white matter network. Front. Hum. Neurosci. 7 716PubMedPubMedCentralGoogle Scholar
  35. Ching S and Brown EN 2014 Modeling the dynamical effects of anesthesia on brain circuits. Curr. Opin. Neurobiol. 25 116–122PubMedPubMedCentralGoogle Scholar
  36. Cocosco CA, Kollokian VR, Kwan K-S, Pike GB and Evans AC 1997 BrainWeb: Online interface to a 3D MRI simulated brain database. Neuroimage 5 S425Google Scholar
  37. Copeland BJ and Shagrir O 2017 Physical computation how general are Gandys principles for mechanisms? Minds Machines 17 217–231Google Scholar
  38. Corbetta M and Shulman GL 2002 Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3 201–215PubMedGoogle Scholar
  39. Craver CF 2007 Explaining the brain (Oxford, Oxford University Press)Google Scholar
  40. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT P McGuire and Bullmore ET 2014 The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137 2382–2395PubMedPubMedCentralGoogle Scholar
  41. da Fontoura Costa L and Bollt E 2006 Fast and accurate nonlinear spectral method for image recognition and registration. Appl. Phys. Lett. 89 174102Google Scholar
  42. Davison AP 2015 PyNN A Python API for neural network modeling; In Encyclopedia of Computational Neuroscience pp 2548–2550Google Scholar
  43. Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L and Yger P 2008 PyNN A common interface for neuronal network simulators. Front. Neuroinform. 2 11PubMedGoogle Scholar
  44. de Quervain DJ, Roozendaal B, Nitsch RM JL McGaugh and Hock C 2000 Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nat. Neurosci. 3 313–314PubMedGoogle Scholar
  45. Delorme A, Makeig S, Fabre M-Thorpe and Sejnowski T 2002 From single-trial EEG to brain area dynamics. Neurocomputing 44 1057–1064Google Scholar
  46. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, et al. 2007 Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. USA 104 11073–11078PubMedGoogle Scholar
  47. Drewes R, Zou Q and Goodman PH 2009 Brainlab A Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the neocortical simulator. Front. Neuroinform. 3 16PubMedPubMedCentralGoogle Scholar
  48. Dudani N, Bhalla U and Ray S 2013 MOOSE, the multiscale object-oriented simulation environment; in Encyclopedia of Computational Neuroscience pp 1–4Google Scholar
  49. Eppler JM, Helias M, Muller E, Diesmann M and Gewaltig MO 2008 PyNEST A Convenient Interface to the NEST Simulator. Front. Neuroinform. 2 12PubMedGoogle Scholar
  50. Ermentrout B 2002 Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students (Philadelphia, Pa., Society for Industrial & Applied Mathematics; Sunbury-on-Thames Electronica Books & Media)Google Scholar
  51. Ermentrout B 2012 XPPAUT. Comput. Syst. Neurobiol. 519–531Google Scholar
  52. Feigin A, Kaplitt MG, Tang C, Lin T, Mattis P, Dhawan V, During MJ and Eidelberg D 2007 Modulation of metabolic brain networks after subthalamic gene therapy for Parkinsons disease. Proc. Natl. Acad. Sci. USA 104 19559–19564PubMedGoogle Scholar
  53. Ford JM and Mathalon DH 2008 Neural synchrony in schizophrenia. Schizophr. Bull. 34 904–906PubMedPubMedCentralGoogle Scholar
  54. Fornito A, Zalesky A and Breakspear M 2015 The connectomics of brain disorders. Nat. Rev. Neurosci. 16 159–172PubMedGoogle Scholar
  55. Frackowiak R and Markram H 2015 The future of human cerebral cartography a novel approach. Philos. Trans. R Soc. Lond. B Biol. Sci. 3701668Google Scholar
  56. Fuertinger S, Horwitz B and Simonyan K 2015 The functional Connectome of speech control. PLoS Biol. 13 e1002209PubMedPubMedCentralGoogle Scholar
  57. Gardner D, Abato M, Knuth KH and Xiao Y 2003 BrainML: Neuroinformatics for data sharing. Biophys. J. 84(2) 305AGoogle Scholar
  58. Gardner D, Xiao Y, Abato M, Knuth K and Gardner E 2002 BrainML and GENIE Neuroinformatics schemas for neuroscience data sharing. Soc. Neurosci. Abstr. 28 Google Scholar
  59. Gewaltig M.-O. and Diesmann M 2007 NEST (neural simulation tool). Scholarpedia 2 1430Google Scholar
  60. Glaser JR and Glaser EM 1990 Neuron imaging with Neurolucida–a PC-based system for image combining microscopy. Comput. Med. Imaging. Graph. 14 307–317PubMedGoogle Scholar
  61. Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP et al. 2010 NeuroML a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput. Biol. 6 e1000815PubMedPubMedCentralGoogle Scholar
  62. Gleeson P, Steuber V and Silver RA 2007 neuroConstruct a tool for modeling networks of neurons in 3D space. Neuron 54 219–235PubMedPubMedCentralGoogle Scholar
  63. Goldental A, Guberman S, Vardi R and Kanter I 2014 A computational paradigm for dynamic logic-gates in neuronal activity. Front. Comput. Neurosci. 8 52PubMedPubMedCentralGoogle Scholar
  64. Gollub RL, Shoemaker JM, King MD, White T, Ehrlich S, Sponheim SR, Clark VP, Turner JA et al. 2013 The MCIC collection a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics 11 367–388PubMedPubMedCentralGoogle Scholar
  65. Goodman DF and Brette R 2009 The brian simulator. Front. Neurosci. 3 192–197PubMedPubMedCentralGoogle Scholar
  66. Goñi J, van den Heuvel MP, Avena A-Koenigsberger, Velez N de Mendizabal, Betzel RF, Griffa A, Hagmann P, Corominas B-Murtra et al. 2014 Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl. Acad. Sci. USA 111 833–838PubMedGoogle Scholar
  67. Grau C, Ginhoux R, Riera A, Nguyen TL, Chauvat H, Berg M, Amengual JL, Pascual A-Leone et al. 2014 Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS One 9 e105225PubMedPubMedCentralGoogle Scholar
  68. Gregory RL 1981 Mind in science – a history of explanations in psychology and physics (Harmondsworth, Penguin)Google Scholar
  69. Gregory RL 2009 Seeing. through illusions (Oxford, Oxford University Press)Google Scholar
  70. Hanlon FM, Houck JM, Pyeatt CJ, Lundy SL, Euler MJ, Weisend MP, Thoma RJ, Bustillo JR et al. 2011 Bilateral hippocampal dysfunction in schizophrenia. Neuroimage 58 1158–1168PubMedPubMedCentralGoogle Scholar
  71. Hartline H 1938 The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol. 121 400–415Google Scholar
  72. Hartline HK and Ratcliff F 1974 Studies on excitation and inhibition in the retina a collection of papers from the laboratories of H. Keffer. Hartline (London, Chapman and Hall)Google Scholar
  73. Hawrylycz MJ, Lein ES, Guillozet AL-Bongaarts, Shen EH, Ng L, Miller JA LN van de Lagemaat, Smith KA, Ebbert A et al. 2012 An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489 391–399PubMedPubMedCentralGoogle Scholar
  74. Hinne M, Ekman M, Janssen RJ, Heskes T and M. A. van Gerven 2015 Probabilistic clustering of the human connectome identifies communities and hubs. PLoS One 10 e0117179PubMedPubMedCentralGoogle Scholar
  75. Holmes AJ, Hollinshead MO TM OKeefe, Petrov VI, Fariello GR, Wald LL, Fischl B, Rosen BR et al. 2015 Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. Sci. Data 2 150031PubMedPubMedCentralGoogle Scholar
  76. Jiang T 2013 Brainnetome a new -ome to understand the brain and its disorders. Neuroimage 80 263–272PubMedGoogle Scholar
  77. Kaabi MG, Tonnelier A and Martinez D 2011 On the performance of voltage stepping for the simulation of adaptive, nonlinear integrate-and-fire neuronal networks. Neural. Comput. 23 1187–1204PubMedGoogle Scholar
  78. Kasabov N, Jain V and Benuskova L 2008 Integrating evolving brain-gene ontology and connectionist-based system for modeling and knowledge discovery. Neural. Netw. 21 266–275PubMedGoogle Scholar
  79. Kasabov N, Jain V, Gottgtroy PC, Benuskova L and Joseph F 2006 Brain-gene ontology Integrating bioinformatics and neuroinformatics data, information and knowledge to enable discoveries Sixth International Conference on Hybrid IntelligentSystems 2006 (HIS06) 13Google Scholar
  80. Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles S-Barley, Lee D, Vázquez A-Reina et al. 2015 Saturated reconstruction of a volume of neocortex. Cell 162 648–661PubMedGoogle Scholar
  81. Kempton MJ, Geddes JR, Ettinger U, Williams SC and Grasby PM 2008 Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch. Gen. Psychiatry 65 1017–1032PubMedGoogle Scholar
  82. Kiernan MC 2015 A fine neuroscience vintage. J. Neurol. Neurosurg. Psychiatry 86 1–2PubMedGoogle Scholar
  83. Kuklisova-Murgasova M, Aljabar P, Srinivasan L, Counsell SJ, Doria V, Serag A, Gousias IS et al. 2011 A dynamic 4D probabilistic atlas of the developing brain. Neuroimage 54 2750–2763PubMedGoogle Scholar
  84. Langer N, Pedroni A, Gianotti LR, Hänggi J, Knoch D and Jäncke L 2012 Functional brain network efficiency predicts intelligence. Hum. Brain. Mapp. 33 1393–1406PubMedGoogle Scholar
  85. Le Novère N 2006 Model storage, exchange and integration. BMC Neurosci. 7 Suppl 1 S11PubMedPubMedCentralGoogle Scholar
  86. Lee,H, Chung MK, Kang H, Kim BN and Lee DS 2011 Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric. Med. Image. Comput. Comput. Assist. Interv. 14 302–309PubMedGoogle Scholar
  87. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS et al. 2007 Genome-wide atlas of gene expression in the adult mouse brain. Nature 445 168–176PubMedGoogle Scholar
  88. Leow, A, Ajilore O, Zhan L, Arienzo D J GadElkarim, Zhang A, Moody T, Van J Horn et al. 2013 Impaired inter-hemispheric integration in bipolar disorder revealed with brain network analyses. Biol. Psychiatry 73 183–193PubMedGoogle Scholar
  89. MacKenzie-Graham A, Jones ES, Shattuck DW, Dinov ID, Bota M and Toga AW 2003 The informatics of a C57BL/6J mouse brain atlas. Neuroinformatics 1 397–410PubMedGoogle Scholar
  90. Marcus DS, Fotenos AF, Csernansky JG, Morris JC and Buckner RL 2010 Open access series of imaging studies longitudinal MRI data in nondemented and demented older adults. J. Cogn. Neurosci. 22 2677–2684PubMedPubMedCentralGoogle Scholar
  91. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC and Buckner RL 2007 Open Access Series of Imaging Studies (OASIS) cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19 1498–1507PubMedGoogle Scholar
  92. Mason EE, Tang S, Renquist KE, Barnes DT, Cullen JJ, Doherty C and Maher JW 1997 A decade of change in obesity surgery. National Bariatric Surgery Registry (NBSR) Contributors. Obes. Surg. 7 189–197PubMedGoogle Scholar
  93. McCarthy MM, Ching S, Whittington MA and Kopell N 2012 Dynamical changes in neurological diseases and anesthesia. Curr. Opin. Neurobiol. 22 693–703PubMedPubMedCentralGoogle Scholar
  94. Mikula S, Trotts I, Stone JM and Jones EG 2007 Internet-enabled high-resolution brain mapping and virtual microscopy. Neuroimage 35 9–15PubMedPubMedCentralGoogle Scholar
  95. Miller EK and Cohen JD 2001 An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24 167–202PubMedGoogle Scholar
  96. Morse TM 2008 Neuroinformatics from bioinformatics to databasing the brain. Bioinform. Biol. Insights 253–264Google Scholar
  97. Mountcastle VB 1998 Perceptual neuroscience: The cerebral cortex (Boston, Harvard University Press)Google Scholar
  98. Moussa MN, Steen MR, Laurienti PJ and Hayasaka S 2012 Consistency of network modules in resting-state FMRI connectome data. PLoS One 7 e44428PubMedPubMedCentralGoogle Scholar
  99. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW et al. 2005 Ways toward an early diagnosis in Alzheimers disease the Alzheimers Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 1 55–66PubMedPubMedCentralGoogle Scholar
  100. Muller AM and Meyer M 2014 Language in the brain at rest new insights from resting state data and graph theoretical analysis. Front. Hum. Neurosci. 8 228PubMedPubMedCentralGoogle Scholar
  101. Murre JMJ and Sturdy DPF 1995 The connectivity of the brain Multi-level quantitative analysis. Biol. Cybern. 73 529–545Google Scholar
  102. Murias M, Webb SJ, Greenson J and Dawson G 2007 Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry. 62 270–273PubMedPubMedCentralGoogle Scholar
  103. Müller-Linow M, Hilgetag CC and Hütt MT 2008 Organization of excitable dynamics in hierarchical biological networks. PLoS Comput. Biol. 4 e1000190PubMedPubMedCentralGoogle Scholar
  104. Nielsen F 2014 Brede tools and federating online neuroinformatics databases. Neuroinformatics 12 27–37PubMedGoogle Scholar
  105. Pais-Vieira M, Chiuffa G, Lebedev M, Yadav A and Nicolelis MA 2015 Building an organic computing device with multiple interconnected brains. Sci. Rep. 5 11869PubMedPubMedCentralGoogle Scholar
  106. Pecevski D, Natschläger T and Schuch K 2009 PCSIM a parallel simulation environment for neural circuits fully integrated with Python. Front. Neuroinform. 3 11PubMedPubMedCentralGoogle Scholar
  107. Peters JM, Taquet M, Vega C, Jeste SS, Fernández IS, Tan J, Nelson CA, Sahin M et al. 2013 Brain functional networks in syndromic and non-syndromic autism a graph theoretical study of EEG connectivity. BMC Med. 11 54PubMedPubMedCentralGoogle Scholar
  108. Piccinini G 2011 The physical Church-Turing thesis Modest or bold?. Brit. J. Philos. Sci. 62(4) 733–769Google Scholar
  109. Piccinini G and Bahar S 2013 Neural computation and the computational theory of cognition. Cogn. Sci. 37 453–488PubMedGoogle Scholar
  110. Piccinini G and Shagrir O 2014 Foundations of computational neuroscience. Curr. Opin. Neurobiol. 25 25–30PubMedGoogle Scholar
  111. Plesser HE, Diesmann M, M.-Gewaltig O and Morrison A 2015 NEST The Neural Simulation Tool. Encyclopedia of Computational Neuroscience pp 1849–1852Google Scholar
  112. Ramakrishnan A, Ifft PJ, Pais M-Vieira, Byun YW, Zhuang KZ, Lebedev MA and Nicolelis MA 2015 Computing arm movements with a monkey brainet. Sci. Rep. 5 10767PubMedPubMedCentralGoogle Scholar
  113. Rao RP, Stocco A, Bryan M, Sarma D, Youngquist TM, Wu J and Prat CS 2014 A direct brain-to-brain interface in humans. PLoS One 9 e111332PubMedPubMedCentralGoogle Scholar
  114. Ray S, Deshpande R, Dudani N and Bhalla US 2008 A general biological simulator the multiscale object oriented simulation environment, MOOSE BMC Neurosci. 9 P93Google Scholar
  115. Reijmer YD, Leemans A, Brundel M, Kappelle LJ and Biessels GJ 2013 Disruption of the cerebral white matter network is related to slowing of information processing speed in patients with type 2 diabetes. Diabetes DB_121644Google Scholar
  116. Robinson EC, Hammers A, Ericsson A, Edwards AD and Rueckert D 2010 Identifying population differences in whole-brain structural networks a machine learning approach. Neuroimage 50 910–919PubMedGoogle Scholar
  117. Rubinov M and Sporns O 2010 Complex network measures of brain connectivity uses and interpretations. Neuroimage 52 1059–1069PubMedGoogle Scholar
  118. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R and Driver J 2006 Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16 1479–1488PubMedGoogle Scholar
  119. Sajda P, Gerson A, Müller KR, Blankertz B and Parra L 2003 A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces. IEEE Trans. Neural. Syst. Rehabil. Eng. 11 184–185PubMedGoogle Scholar
  120. Schiff ND, Nauvel T and Victor JD 2014 Large-scale brain dynamics in disorders of consciousness. Curr. Opin. Neurobiol. 25 7–14PubMedGoogle Scholar
  121. Schwartz E 1993 Computational. Neuroscience (MIT Press)Google Scholar
  122. Seeley WW, Crawford RK, Zhou J, Miller BL and Greicius MD 2009 Neurodegenerative diseases target large-scale human brain networks. Neuron 62 42–52PubMedPubMedCentralGoogle Scholar
  123. Sejnowski TJ, Koch C and Churchland PS 1988 Computational neuroscience. Science. 241 1299–1306PubMedGoogle Scholar
  124. Seo EH, Lee DY, Lee JM, Park JS, Sohn BK, Lee DS, Choe YM and Woo JI 2013 Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimers disease. PLoS One 8 e53922PubMedPubMedCentralGoogle Scholar
  125. Sherif T, Kassis N, Rousseau M, Adalat R and Evans AC 2014 BrainBrowser distributed, web-based neurological data visualization. Front. Neuroinform. 8 89PubMedGoogle Scholar
  126. Sherrington CSS 1906 Integrative. action of.the nervous system (New Haven, Yale U.P.)Google Scholar
  127. Shoeb AH 2009 Application of machine learning to epileptic seizure onset detection and treatment (Massachusetts Institute of Technology)Google Scholar
  128. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE et al. 2009 Correspondence of the brains functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106 13040–13045PubMedGoogle Scholar
  129. Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, Nichols TE, Robinson EC et al. 2013 Functional connectomics from resting-state fMRI. Trends. Cogn. Sci. 17 666–682PubMedPubMedCentralGoogle Scholar
  130. Sompolinsky H 2014 Computational neuroscience beyond the local circuit. Curr. Opin. Neurobiol. 25 xiii-xviiiGoogle Scholar
  131. Sporns O 2015 Cerebral cartography and connectomics. Philos. Trans. R Soc. Lond. B Biol. Sci. 370 1668Google Scholar
  132. Sporns O and Kötter R 2004 Motifs in brain networks. PLoS Biol. 2 e369PubMedPubMedCentralGoogle Scholar
  133. Sporns O, Tononi G, and Kötter R 2005 The human connectome a structural description of the human brain. PLoS Comput. Biol. 1 e42PubMedPubMedCentralGoogle Scholar
  134. Stalling D, Westerhoff M and H.-Hege C 2005 Amira a highly interactive system for visual data analysis. Visualiz. Handbook 38 749–767Google Scholar
  135. Stam CJ, Jones BF, Nolte G, Breakspear M and Scheltens P 2007 Small-world networks and functional connectivity in Alzheimers disease. Cereb. Cortex. 17 92–99PubMedGoogle Scholar
  136. Stimberg M, Goodman DF, Benichoux V and Brette R 2014 Equation-oriented specification of neural models for simulations. Front. Neuroinform. 8 6PubMedPubMedCentralGoogle Scholar
  137. Supekar K, Musen M and Menon V 2009 Development of large-scale functional brain networks in children. PLoS Biol. 7 e1000157PubMedPubMedCentralGoogle Scholar
  138. Sutton D 1999 The whole brain atlas. BMJ 319 1507PubMedPubMedCentralGoogle Scholar
  139. Tijms BM, Yeung HM, Sikkes SA, Möller C, Smits LL, Stam CJ, Scheltens P WM van der Flier et al. 2014 Single-subject gray matter graph properties and their relationship with cognitive impairment in early- and late-onset Alzheimers disease. Brain. Connect. 4 337–346PubMedGoogle Scholar
  140. Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ and Schnitzler A 2003 The cerebral oscillatory network of parkinsonian resting tremor. Brain. 126 199–212PubMedGoogle Scholar
  141. Trappenberg T 2009 Fundamentals. of computational neuroscience (OUP Oxford)Google Scholar
  142. Turner JA, Lane SR, Bockholt HJ and Calhoun VD 2011 The clinical assessment and remote administration tablet. Front. Neuroinform. 5 31PubMedPubMedCentralGoogle Scholar
  143. Uhlhaas PJ and Singer W 2007 What do disturbances in neural synchrony tell us about autism? Biol. Psychiatry 62 190–191Google Scholar
  144. Van Essen DC and Drury HA and Joshi S and Miller MI 1998 Functional and structural mapping of human cerebral cortex Solutions are in the surfaces. Proc. Natl. Acad. USA 95 788–795Google Scholar
  145. Van Essen D C, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, Chang A, Chen L et al. 2012 The Human Connectome Project a data acquisition perspective. Neuroimage 62 2222–2231PubMedPubMedCentralGoogle Scholar
  146. Wang L, Kogan A, Cobia D, Alpert K, Kolasny A, Miller MI and Marcus D 2013 Northwestern University Schizophrenia Data and Software Tool (NUSDAST). Front. Neuroinform. 7 25PubMedPubMedCentralGoogle Scholar
  147. Wang L, Uhrig L, Jarraya B and Dehaene S 2015 Representation of numerical and sequential patterns in macaque and human brains. Curr. Biol. 25 1966–1974PubMedGoogle Scholar
  148. Young MP and Scannell JW 2000 Brain structure-function relationships advances from neuroinformatics. Philos. Trans. R Soc. Lond. B Biol. Sci. 355 3–6Google Scholar
  149. Zhou C, Zemanová L, Zamora G, Hilgetag CC and Kurths J 2006 Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97 238103PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Losiana Nayak
    • 1
  • Abhijit Dasgupta
    • 1
  • Ritankar Das
    • 1
  • Kuntal Ghosh
    • 1
  • Rajat K De
    • 1
    Email author
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations