Advertisement

Journal of Biosciences

, Volume 43, Issue 1, pp 189–223 | Cite as

Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives

  • Günter Vogt
Review

Abstract

In the last 15 years, considerable attempts have been undertaken to develop the obligately parthenogenetic marbled crayfish Procambarus virginalis as a new model in biology. Its main advantage is the production of large numbers of offspring that are genetically identical to the mother, making this crustacean particularly suitable for research in epigenetics. Now, a draft genome, transcriptome and genome-wide methylome are available opening new windows for research. In this article, I summarize the biological advantages and genomic and epigenetic features of marbled crayfish and, based on first promising data, discuss what this new model could contribute to answering of “big” biological questions. Genome mining is expected to reveal new insights into the genetic specificities of decapod crustaceans, the genetic basis of arthropod reproduction, moulting and immunity, and more general topics such as the genetic underpinning of adaptation to fresh water, omnivory, biomineralization, sexual system change, behavioural variation, clonal genome evolution, and resistance to cancer. Epigenetic investigations with the marbled crayfish can help clarifying the role of epigenetic mechanisms in gene regulation, tissue specification, adult stem cell regulation, cell ageing, organ regeneration and disease susceptibility. Marbled crayfish is further suitable to elucidate the relationship between genetic and epigenetic variation, the transgenerational inheritance of epigenetic signatures and the contribution of epigenetic phenotype variation to the establishment of social hierarchies, environmental adaptation and speciation. These issues can be tackled by experiments with highly standardized laboratory lineages, comparison of differently adapted wild populations and the generation of genetically and epigenetically edited strains.

Keywords

Cancer resistance disease susceptibility DNA methylation environmental adaptation epigenetics genomics immunity marbled crayfish regeneration speciation 

Notes

Acknowledgements

Many thanks to Chris Lukhaup, Gerhard Scholtz and Peer Martin for providing the photographs in figures 1A, 2C and 3A, respectively, and an unknown reviewer for valuable suggestions to improve the manuscript.

References

  1. Abehsera S, Glazer L, Tynyakov J, Plaschkes I, Chalifa-Caspi V, Khalaila I, Aflalo ED and Sagi A 2016 Binary gene expression patterning of the molt cycle: the case of chitin metabolism. PLoS ONE 10 e0122602CrossRefGoogle Scholar
  2. Abreu Velez AM and Howard MS 2015 Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. North Am. J. Med. Sci. 7 176–188CrossRefGoogle Scholar
  3. Ahyong ST, Lowry JK, Alonso M, Bamber RN, Boxshall GA, Castro P, Gerken S, Karaman GS, Goy JW, Jones DS, Meland K, Rogers DC and Svavarsson J 2011 Subphylum Crustacea Brünnich, 1772. Zootaxa 3148 165–191Google Scholar
  4. Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC and Wilkinson GS 2015 Cancer across the tree of life: cooperation and cheating in multicellularity. Philos. Trans. R. Soc. Lond. B 370 20140219CrossRefGoogle Scholar
  5. Albalat R, Martí-Solans J and Cañestro C 2012 DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates. Brief. Funct. Genom. 11 142–155PubMedCrossRefGoogle Scholar
  6. Allen ML 2015 Characterization of adult transcriptomes from the omnivorous lady beetle Coleomegilla maculata fed pollen or insect egg diet. J. Genom. 3 20–28PubMedPubMedCentralCrossRefGoogle Scholar
  7. Allis CD and Jenuwein T 2016 The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17 487–500PubMedCrossRefGoogle Scholar
  8. Allis CD, Caparros M-L, Jenuwein T, Lachner M and Reinberg D 2015 Overview and concepts; in Epigenetics, 2nd ed. (eds) CD Allis, M-L Caparros, T Jenuwein and D Reinberg (Cold Spring Harbor: Cold Spring Harbor Laboratory Press) pp 47–116Google Scholar
  9. Alwes F and Scholtz G 2006 Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev. Genes Evol. 216 169–184PubMedCrossRefGoogle Scholar
  10. Amend SR, Roy S, Brown JS and Pienta KJ 2016 Ecological paradigms to understand the dynamics of metastasis. Cancer Lett. 380 237–242PubMedCrossRefGoogle Scholar
  11. Anger K 2013 Neotropical Macrobrachium (Caridea: Palaemonidae): on the biology, origin, and radiation of freshwater-invading shrimp. J. Crust. Biol. 33 151–181CrossRefGoogle Scholar
  12. Anisimov VN Ukraintseva SV and Yashin AI 2005 Cancer in rodents: does it tell us about cancer in humans? Nat. Rev. Cancer 5 807–819PubMedCrossRefGoogle Scholar
  13. Aparicio S and Caldas C 2013 The implications of clonal genome evolution for cancer medicine. New Engl. J. Med. 368 842–851PubMedCrossRefGoogle Scholar
  14. Arndt GM and MacKenzie KL 2016 New prospects for targeting telomerase beyond the telomere. Nat. Rev. Cancer 16 508–524PubMedCrossRefGoogle Scholar
  15. Avgustinova A and Benitah SA 2016 Epigenetic control of adult stem cell function. Nat. Rev. Mol. Cell Biol. 17 643–658PubMedCrossRefGoogle Scholar
  16. Bae B-I, Jayaraman D and Walsh CA 2015 Genetic changes shaping the human brain. Dev. Cell 32 423–434Google Scholar
  17. Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K and Weigel D 2011 Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480 245–249PubMedCrossRefGoogle Scholar
  18. Beerman I and Rossi DJ 2015 Epigenetic control of stem cell potential during homeostasis, aging, and disease. Cell Stem Cell 16 613–625PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bell G 1982 The masterpiece of nature: the evolution and genetics of sexuality (Berkley: University of California Press)Google Scholar
  20. Benson A, Städele C, Gährs C, Vidal-Gadea A and Stein W 2017 Behavioral consequences of RNA-mediated suppression of innexin expression in marbled crayfish. Abstracts of the Illinois State University Graduate Student Symposium 2017 (Normal, IL: Illinois State University)Google Scholar
  21. Bentov S, Aflalo ED, Tynyakov J, Glazer L and Sagi A 2016 Calcium phosphate mineralization is widely applied in crustacean mandibles. Sci. Rep. 6 22118PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bierbach D, Laskowski KL and Wolf M 2017 Behavioural individuality in clonal fish arises despite near-identical rearing conditions. Nat. Commun. 8 15361PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bird A 2002 DNA methylation patterns and epigenetic memory. Genes Dev. 16 6–21PubMedCrossRefGoogle Scholar
  24. Blewitt M and Whitelaw E 2013 The use of mouse models to study epigenetics. Cold Spring Harb. Perspect. Biol. 5 a017939PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bond JS and Beynon RJ 1995 The astacin family of metalloendopeptidases. Prot. Sci. 4 1247–1261CrossRefGoogle Scholar
  26. Braband A, Cameron SL, Podsiadlowski L, Daniels SR and Mayer G 2010 The mitochondrial genome of the onychophoran Opisthopatus cinctipes (Peripatopsidae) reflects the ancestral mitochondrial gene arrangement of Panarthropoda and Ecdysozoa. Mol. Phyl. Evol. 57 285–292CrossRefGoogle Scholar
  27. Brady P, Elizur A, Williams R, Cummins SF and Knibb W 2012 Gene expression profiling of the cephalothorax and eyestalk in Penaeus monodon during ovarian maturation. Int. J. Biol. Sci. 8 328–334PubMedPubMedCentralCrossRefGoogle Scholar
  28. Breiling A and Lyko F 2015 Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenet. Chromat. 8 24CrossRefGoogle Scholar
  29. Brookes E and Shi Y 2014 Diverse epigenetic mechanisms of human disease. Annu. Rev. Genet. 48 237–268PubMedCrossRefGoogle Scholar
  30. Burggren W 2016 Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology 5 24PubMedCentralCrossRefGoogle Scholar
  31. Cerenius L and Söderhäll K 2013 Variable immune molecules in invertebrates. J. Exp. Biol. 216 4313–4319PubMedCrossRefGoogle Scholar
  32. Cerenius L and Söderhäll K 2017 Crayfish immunity-recent findings. Dev. Comp. Immunol. 80 94–98Google Scholar
  33. Cerenius L, Lee BL and Söderhäll K 2008 The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 6 263–271CrossRefGoogle Scholar
  34. Chandler JC, Aizen J, Fitzgibbon QP, Elizur A and Ventura T 2016 Applying the power of transcriptomics: understanding male sexual development in decapod Crustacea. Integr. Comp. Biol. 56 1144–1156PubMedCrossRefGoogle Scholar
  35. Chang ES and Mykles DL 2011 Regulation of crustacean molting: a review and our perspectives. Gen. Comp. Endocrinol. 172 323–330PubMedCrossRefGoogle Scholar
  36. Charniaux-Cotton H and Payen G 1985 Sexual differentiation; in The biology of Crustacea. Vol. 9: Integument, pigments, and hormonal processes (eds) DE Bliss and LH Mantel (New York: Academic Press) pp 217–299CrossRefGoogle Scholar
  37. Chen X, Zeng D, Chen X, Xie D, Zhao Y, Yang C, Li Y, Ma N, Li M, Yang Q, Liao Z and Wang H 2013 Transcriptome analysis of Litopenaeus vannamei in response to white spot syndrome virus infection. PLoS One 8 e73218PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chen B, Zhang Y, Zhang X, Jia S, Chen S and Kang L 2016 Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis. Sci. Rep. 6 23330PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cheng Y, Xie N, Jin P and Wang T 2015 DNA methylation and hydroxymethylation in stem cells. Cell Biochem. Funct. 33 161–173PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chernyavskaya Y, Kent B and Sadler KC 2016 Zebrafish discoveries in cancer epigenetics. Adv. Exp. Med. Biol. 916 169–197PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chucholl C 2016 Marbled crayfish gaining ground in Europe: the role of the pet trade as invasion pathway; in Freshwater crayfish: global overview (eds) T Kawai, Z Faulkes and G Scholtz (Boca Raton: CRC Press) pp 83–114Google Scholar
  42. Chucholl C and Pfeiffer M 2010 First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817). Aquat. Invasions 5 405–412CrossRefGoogle Scholar
  43. Coccia E, Varricchio E and Paolucci M 2011 Digestive enzymes in the crayfish Cherax albidus: polymorphism and partial characterization. Int. J. Zool. 2011 310371CrossRefGoogle Scholar
  44. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Kumar Basu M et al. 2011 The ecoresponsive genome of Daphnia pulex. Science 331 555–561PubMedPubMedCentralCrossRefGoogle Scholar
  45. Corre G, Stockholm D, Arnaud O, Kaneko G, Viñuelas J, Yamagata Y, Neildez-Nguyen TMA, Kupiec J-J, Beslon G, Gandrillon O and Paldi A 2014 Stochastic fluctuations and distributed control of gene expression impact cellular memory. PLoS ONE 9 e115574PubMedPubMedCentralCrossRefGoogle Scholar
  46. Crandall KA and De Grave S 2017 An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. J. Crust. Biol. 37 615–653CrossRefGoogle Scholar
  47. Crawford AC, Kricker JA, Anderson AJ, Richardson NR and Mather BP 2004 Structure and function of a cellulase gene in redclaw crayfish, Cherax quadricarinatus. Gene 340 267–274PubMedCrossRefGoogle Scholar
  48. Crews D and Gore AC 2014 Controversies and debate of generational epigenetic inheritance; in Transgenerational epigenetics: evidence and debate (ed) TO Tollefsbol (Waltham: Academic Press) pp 369–390Google Scholar
  49. Croce CM 2008 Oncogenes and cancer. New Engl. J. Med. 358 502–511PubMedCrossRefGoogle Scholar
  50. Cvitanić M 2017 Reproduktivni ciklus invazivne vrste mramornog raka Procambarus fallax (Hagen, 1870) f. virginalis u jezeru Šoderica. Diploma Thesis (Zagreb: University of Zagreb)Google Scholar
  51. Davis LE and Burnett AL 1964 A study of growth and cell differentiation in the hepatopancreas of the crayfish. Dev. Biol. 10 122–153PubMedCrossRefGoogle Scholar
  52. Denham J 2017 Exercise and epigenetic inheritance of disease risk. Acta Physiol. 222 e12881Google Scholar
  53. Duke AA, Bègue L, Bell R and Eisenlohr-Moul T 2013 Revisiting the serotonin-aggression relation in humans: a meta-analysis. Psychol. Bull. 139 1148–1172PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dunwell TL and Pfeifer GP 2014 Drosophila genomic methylation: new evidence and new questions. Epigenomics 6 459–461PubMedPubMedCentralCrossRefGoogle Scholar
  55. Eads BD, Tsuchiya D, Andrews J, Lynch M and Zolan ME 2012 The spread of a transposon insertion in Rec8 is associated with obligate asexuality in Daphnia. Proc. Natl. Acad. Sci. USA 109 858–863PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ewer J 2005 How the ecdysozoan changed its coat. PLoS Biol. 3 e349PubMedPubMedCentralCrossRefGoogle Scholar
  57. Falckenhayn C 2016 The methylome of the marbled crayfish Procambarus virginalis. Doctoral Thesis (Heidelberg: University of Heidelberg)Google Scholar
  58. FAO 2014 Fishery and aquaculture statistics (Rome: Food and Agriculture Organization of the United Nations)Google Scholar
  59. Farca Luna AJ, Hurtado-Zavala JI, Reischig T and Heinrich R 2009 Circadian regulation of agonistic behavior in groups of parthenogenetic marbled crayfish, Procambarus sp. J. Biol. Rhythms 24 64–72PubMedCrossRefGoogle Scholar
  60. Faulkes Z 2016 Marble crayfish as a new model organism and a new threat to native crayfish conservation; in Freshwater crayfish: global overview (eds) T Kawai, Z Faulkes and G Scholtz (Boca Raton: CRC Press) pp 31–53Google Scholar
  61. Feinberg AP and Irizarry RA 2010 Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA 107 (Suppl. 1) 1757–1764PubMedCrossRefGoogle Scholar
  62. Ferré LE, Medesani DA, Fernando García C, Grodzielski M and Rodríguez EM 2012 Vitellogenin levels in hemolymph, ovary and hepatopancreas of the freshwater crayfish Cherax quadricarinatus (Decapoda: Parastacidae) during the reproductive cycle. Rev. Biol. Trop. 60 253–261PubMedCrossRefGoogle Scholar
  63. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J et al. 2005 Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102 10604–10609PubMedPubMedCentralCrossRefGoogle Scholar
  64. Frand AR, Russel S and Ruvkun G 2005 Functional genomic analysis of C. elegans molting. PLoS Biol. 3 e312PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gährs C, Städele C, Benson A, Stein W and Vidal-Gadea A 2017 Marbled crayfish: a new genetic model organism for studying the influence of neuromodulators on network dynamics. Abstracts of the 2017 Scientific Meeting of the Chicago Chapter of the Society for Neuroscience (Chicago, IL: Northwestern University) pp 66Google Scholar
  66. Gao Y, Wei J, Yuan J, Zhang X, Li F and Xiang J 2017 Transcriptome analysis on the exoskeleton formation in early developmental stages and reconstruction scenario in growth-moulting in Litopenaeus vannamei. Sci. Rep. 7 1098PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gawad C, Koh W and Quake SR 2016 Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17 175–188PubMedCrossRefGoogle Scholar
  68. Geier G and Zwilling R 1998 Cloning and characterization of a cDNA coding for Astacus embryonic astacin, a member of the astacin family of metalloproteases from the crayfish Astacus astacus. Eur. J. Biochem. 253 796–803PubMedCrossRefGoogle Scholar
  69. Gherardi F, Souty-Grosset C, Vogt G, Diéguez-Uribeondo J and Crandall KA 2010 Infraorder Astacidea Latreille, 1802 p.p.: The freshwater crayfish; in Treatise on zoology—anatomy, taxonomy, biology. The Crustacea. Vol. 9, Part A: Eucarida: Euphausiacea, Amphionidacea, and Decapoda (partim) (eds) FR Schram and JC von Vaupel Klein (Leiden: Brill) pp. 269–423Google Scholar
  70. Glover KA, Madhun AS, Dahle G, Sørvik AGE, Wennevik V, Skaala Ø, Morton HG, Hansen TJ and Fjelldal PG 2015 The frequency of spontaneous triploidy in farmed Atlantic salmon produced in Norway during the period 2007–2014. BMC Genet. 16 37PubMedPubMedCentralCrossRefGoogle Scholar
  71. Godwin RM, Frusher S, Montgomery SS and Ovenden J 2011 Telomere length analysis in crustacean species: Metapenaeus macleayi, Sagmariasus verreauxi, and Jasus edwardsii. ICES J. Mar. Sci. 68 2053–2058CrossRefGoogle Scholar
  72. Gomes NMV, Ryder OA, Houck ML, Charter SJ, Walker W, Forsyth NR, Austad SN, Venditti C, Pagel M, Shay JW and Wright WE 2011 Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10 761–768PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J and Bennett MD 2007 Eukaryotic genome size databases. Nucl. Acids Res. 35 (Database Issue) D332–D338PubMedCrossRefGoogle Scholar
  74. Gui T, Zhang J, Song F, Sun Y, Xie S, Yu K and Xiang J 2016 CRISPR/Cas9-mediated genome editing and mutagenesis of EcChi4 in Exopalaemon carinicauda. Gene Genome Genet. 6 3757–3764Google Scholar
  75. Gutekunst J 2017 Clonal genome evolution of the marbled crayfish, Procambarus virginalis. Doctoral Thesis (Heidelberg: University of Heidelberg)Google Scholar
  76. Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy J, Lyko F 2018 Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat. Ecol. Evol. in pressGoogle Scholar
  77. Hackett JA and Surani MA 2012 DNA methylation dynamics during the mammalian life cycle. Philos. Trans. R. Soc. Lond. 368 20110328CrossRefGoogle Scholar
  78. Hagmann J, Becker C, Müller J, Stegle O, Meyer RC, Wang G, Schneeberger K, Fitz J, Altmann T, Bergelso J, Borgwardt K and Weigel D 2015 Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 11 e1004920PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hanahan D and Weinberg RA 2000 The hallmarks of cancer. Cell 100 57–70PubMedCrossRefGoogle Scholar
  80. Hariharan IK, Wake DB and Wake MH 2016 Indeterminate growth: could it represent the ancestral condition? Cold Spring Harb. Perspect. Biol. 8 a019174PubMedCentralCrossRefGoogle Scholar
  81. Harkness MLR, Harkness RD and Venn MF 1978 Digestion of native collagen in the gut. Gut 19 240–243PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hendrix AN and Loftus WF 2000 Distribution and relative abundance of the crayfishes Procambarus alleni (Faxon) and Procambarus fallax (Hagen) in Southern Florida. Wetlands 20 194–199CrossRefGoogle Scholar
  83. Henry L, Schwander T and Crespi BJ 2012 Deleterious mutation accumulation in asexual Timema stick insects. Mol. Biol. Evol. 29 401–408.PubMedCrossRefGoogle Scholar
  84. Henryon M and Purvis IW 2000 Eggs and hatchlings of the freshwater crayfish, marron (Cherax tenuimanus), can be successfully incubated artificially. Aquaculture 184 247–254CrossRefGoogle Scholar
  85. Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam GV and Feinberg AP 2012 Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat. Neurosci. 15 1371–1373PubMedPubMedCentralCrossRefGoogle Scholar
  86. Herman JJ, Spencer HG, Donohue K and Sultan SE 2014 How stable ‘should’ epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution 68 632–643PubMedCrossRefGoogle Scholar
  87. Hitchins MP 2010 Inheritance of epigenetic aberrations (constitutional epimutations) in cancer susceptibility. Adv. Genet. 70 201–243PubMedGoogle Scholar
  88. Hobbs HH, Jr 1942 The crayfishes of Florida. Univ. Florida Publ. Biol. Sci. Ser. 3(2) 1–179Google Scholar
  89. Hobbs HH, Jr 1981 The crayfishes of Georgia. Smithson. Contrib. Zool. 318 1–549CrossRefGoogle Scholar
  90. Hopkins PM, Chung AC-K and Durica DS 1999 Limb regeneration in the fiddler crab, Uca pugilator: histological, physiological and molecular considerations. Am. Zool. 39 513–526CrossRefGoogle Scholar
  91. Horvath S 2013 DNA methylation age of human tissues and cell types. Genome Biol. 14 R115PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hou Y and Lin S 2009 Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS ONE 4 e6978PubMedPubMedCentralCrossRefGoogle Scholar
  93. Hu Q and Rosenfeld MG 2012 Epigenetic regulation of human embryonic stem cells. Front. Genet. 3 238PubMedPubMedCentralGoogle Scholar
  94. Jablonka E and Lamb MJ 2014 Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life, revised edition (Cambridge: MIT Press)Google Scholar
  95. Jablonka E and Raz G 2009 Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quart. Rev. Biol. 84 131–176PubMedCrossRefGoogle Scholar
  96. James MO, Altman AH, Li C-LJ and Schell JD, Jr 1995 Biotransformation, hepatopancreas DNA binding and pharmacokinetics of benzo[a]pyrene after oral and parenteral administration to the American lobster, Homarus americanus. Chem. Biol. Interact. 95 141–160PubMedCrossRefGoogle Scholar
  97. Jenuwein T and Allis CD 2001 Translating the histone code. Science 293 1074–1080PubMedCrossRefGoogle Scholar
  98. Jewell CSE, Mayeaux MH and Winston GW 1997 Benzo[a]pyrene metabolism by the hepatopancreas and green gland of the red swamp crayfish, Procambarus clarkii, in vitro. Comp. Biochem. Physiol. 118C 369–374Google Scholar
  99. Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J et al. 2013 Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153 773–784PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jiang H, Xing Z, Lu W, Qian Z, Yu H and Li J 2014 Transcriptome analysis of red swamp crawfish Procambarus clarkii reveals genes involved in gonadal development. PLoS ONE 9 e105122PubMedPubMedCentralCrossRefGoogle Scholar
  101. Jimenez SA and Faulkes Z 2010 Establishment and care of a colony of parthenogenetic marbled crayfish, Marmorkrebs. Invert. Rearing 1 10–18Google Scholar
  102. Jirtle RL and Skinner MK 2007 Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8 253–262PubMedCrossRefGoogle Scholar
  103. Jones PA 2012 Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13 484–492PubMedCrossRefGoogle Scholar
  104. Jones JPG, Rasamy JR, Harvey A, Toon A, Oidtmann B, Randrianarison MH, Raminosoa N and Ravoahangimalala OR 2009 The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol. Invasions 11 1475–1482CrossRefGoogle Scholar
  105. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, et al. 2012 The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484 55–61PubMedPubMedCentralCrossRefGoogle Scholar
  106. Jung M and Pfeifer GP 2015 Aging and DNA methylation. BMC Biol. 13 7PubMedPubMedCentralCrossRefGoogle Scholar
  107. Kaldre K, Meženin A and Paaver T 2016 A preliminary study on the tolerance of marble crayfish Procambarus fallax f. virginalis to low temperature in nordic climate; in Freshwater crayfish: global overview (eds) T Kawai, Z Faulkes and G Scholtz (Boca Raton: CRC Press) pp 54–62Google Scholar
  108. Kao D, Lai AG, Stamataki E, Rosic S, Konstandinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stancheva N, Sémon M, Grillo M, et al. 2016 The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife 5 e20062Google Scholar
  109. Karnay AM and Elefant F 2017 Drosophila epigenetics; in Handbook of epigenetics: the new molecular and medical genetics, 2nd ed. (ed) TO Tollefsbol (New York: Academic Press) pp 205–229CrossRefGoogle Scholar
  110. Kato M, Hiruta C and Tochinai S 2016 The behavior of chromosomes during parthenogenetic oogenesis in Marmorkrebs Procambarus fallax f. virginalis. Zool. Sci. 33 426–430PubMedCrossRefGoogle Scholar
  111. Keller NS, Pfeiffer M, Roessink I, Schulz R and Schrimpf A 2014 First evidence of crayfish plague agent in populations of the marbled crayfish (Procambarus fallax forma virginalis). Knowl. Manag. Aquat. Ecosyst. 414 15CrossRefGoogle Scholar
  112. Kelly WG 2014 Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenet. Chromat. 7 6CrossRefGoogle Scholar
  113. Kenny NJ, Sin YW, Shen X, Zhe Q, Wang W, Chan TF, Tobe SS, Shimeld SM, Chu KH and Hui JHL 2014 Genomic sequence and experimental tractability of a new decapod shrimp model, Neocaridina denticulata. Mar. Drugs 12 1419–1437PubMedCrossRefGoogle Scholar
  114. Klapper W, Kühne K, Singh KK, Heidorn K, Parwaresh R and Krupp G 1998 Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Lett. 439 143–146PubMedCrossRefGoogle Scholar
  115. Klironomos F, Berg J and Collins S 2013 How epigenetic mutations can affect genetic evolution: model and mechanism. BioEssays 35 571–578PubMedCrossRefGoogle Scholar
  116. Kronholm I 2017 Adaptive evolution and epigenetics; in Handbook of epigenetics: the new molecular and medical genetics, 2nd ed. (ed) TO Tollefsbol (New York: Academic Press) pp 427–438CrossRefGoogle Scholar
  117. Kronholm I and Collins S 2016 Epigenetic mutations can both help and hinder adaptive evolution. Mol. Ecol. 25 1856–1868PubMedCrossRefGoogle Scholar
  118. Lafon-Placette C and Köhler C 2015 Epigenetic mechanisms of postzygotic reproductive isolation in plants. Curr. Opin. Plant Biol. 23 39–44PubMedCrossRefGoogle Scholar
  119. Lai AG and Aboobaker AA 2017 Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genom. 18 389PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lee EYHP and Muller WJ 2010 Oncogenes and tumor suppressor genes. Cold Spring Harb. Perspect. Biol. 2 a003236PubMedPubMedCentralGoogle Scholar
  121. Le Moullac G, Van Wormhoudt A and AQUACOP 1994 Adaptation of digestive enzymes to dietary protein, carbohydrate and fibre levels and influence of protein and carbohydrate quality in Penaeus vannamei larvae (Crustacea, Decapoda). Aquat. Living Resour. 7 203–210CrossRefGoogle Scholar
  122. Leung C, Breton S and Angers B 2016 Facing environmental predictability with different sources of epigenetic variation. Ecol. Evol. 6 5234–5245PubMedPubMedCentralCrossRefGoogle Scholar
  123. Levine AJ 1993 The tumor suppressor genes. Annu. Rev. Biochem. 62 623–651PubMedCrossRefGoogle Scholar
  124. Levy T, Rosen O, Simons O, Savaya Alkalay A and Sagi A 2017 The gene encoding the insulin-like androgenic gland hormone in an all-female parthenogenetic crayfish. PLoS ONE 12 e0189982PubMedPubMedCentralCrossRefGoogle Scholar
  125. Liebl AL, Schrey AW, Richards CL and Martin LB 2013 Patterns of DNA methylation throughout a range expansion of an introduced songbird. Integr. Comp. Biol. 53 351–358PubMedCrossRefGoogle Scholar
  126. Lipták B, Mojžišová M, Gruľa D, Christophoryová J, Jablonski D, Bláha M, Petrusek A and Kouba A 2017 Slovak section of the Danube has its well-established breeding ground of marbled crayfish Procambarus fallax f. virginalis. Knowl. Manag. Aquat. Ecosyst. 418 40CrossRefGoogle Scholar
  127. Lőkkös A, Müller T, Kovács K, Várkonyi L, Specziár A and Martin P 2016 The alien, parthenogenetic marbled crayfish (Decapoda: Cambaridae) is entering Kis-Balaton (Hungary), one of Europe’s most important wetland biotopes. Knowl. Manag. Aquat. Ecosyst. 417 16CrossRefGoogle Scholar
  128. Liu Y, Zhang Y, Tao S, Guan Y, Zhang T and Wang Z 2016a Global DNA methylation in gonads of adult zebrafish Danio rerio under bisphenol A exposure. Ecotoxicol. Environ. Saf. 130 124–132PubMedCrossRefGoogle Scholar
  129. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA and Jaenisch R 2016b Editing DNA methylation in the mammalian genome. Cell 167 233–247PubMedPubMedCentralCrossRefGoogle Scholar
  130. Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, Koltšina M, Nilsson TK, Vilo J, Salumets A and Tõnisson N 2014 DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 15 r54PubMedPubMedCentralCrossRefGoogle Scholar
  131. Longshaw M 2011 Diseases of crayfish: a review. J. Invert. Pathol. 106 54–70CrossRefGoogle Scholar
  132. Luquet G 2012 Biomineralizations: insights and prospects from crustaceans. ZooKeys 176 103–121CrossRefGoogle Scholar
  133. Lv J, Zhang L, Liu P and Li J 2017 Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus. PLoS One 12 e0175315PubMedPubMedCentralCrossRefGoogle Scholar
  134. Lyko F 2017a The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363 544–552PubMedCrossRefGoogle Scholar
  135. Lyko F 2017b Modellorganismus Marmorkrebs: ein Krebs für die Krebsforschung. BIUZ 2017(3) 172–177CrossRefGoogle Scholar
  136. Lyko F 2018 The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19 81–92PubMedCrossRefGoogle Scholar
  137. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C and Maleszka R 2010 The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 8 e1000506PubMedPubMedCentralCrossRefGoogle Scholar
  138. Madlung A and Wendel JF 2013 Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet. Genome Res. 140 270–285PubMedCrossRefGoogle Scholar
  139. Maor GL, Yearim A and Ast G 2015 The alternative role of DNA methylation in splicing regulation. Trends Genet. 31 274–280CrossRefGoogle Scholar
  140. MarkWelch DB, Ricci C and Meselson M 2009 Bdelloid rotifers: progress in understanding the success of an evolutionary scandal; in Lost sex: the evolutionary biology of parthenogenesis (eds) I Schön, K Martens and P van Dijk (Dordrecht: Springer) pp 259–280Google Scholar
  141. Martin GM 2009 Epigenetic gambling and epigenetic drift as an antagonistic pleiotropic mechanism of aging. Aging Cell 8 761–764PubMedCrossRefGoogle Scholar
  142. Martin P 2015 Parthenogenesis: mechanisms, evolution, and its relevance to the role of marbled crayfish as model organism and potential invader; in Freshwater crayfish: global overview (eds) T Kawai, Z Faulkes and G Scholtz (Boca Raton: CRC Press) pp 63–82CrossRefGoogle Scholar
  143. Martin JW and Davis GE 2001 An updated classification of the recent Crustacea. Science Series 39 (Los Angeles: Natural History Museum of Los Angeles County)Google Scholar
  144. Martin P, Kohlmann K and Scholtz G 2007 The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94 843–846PubMedCrossRefGoogle Scholar
  145. Martin P, Dorn NJ, Kawai T, van der Heiden C and Scholtz G 2010 The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib. Zool. 79 107–118Google Scholar
  146. Martin P, Thonagel S and Scholtz G 2016a The parthenogenetic Marmorkrebs (Malacostraca: Decapoda: Cambaridae) is a triploid organism. J. Zool. Syst. Evol. Res. 54 13–21CrossRefGoogle Scholar
  147. Martin A, Serano JM, Jarvis E, Bruce HS, Wang J, Ray S, Barker CA, O’Connell LC and Patel NH 2016b CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution. Curr. Biol. 26 14–26PubMedCrossRefGoogle Scholar
  148. Massicotte R and Angers B 2012 General-purpose genotype or how epigenetics extend the flexibility of a genotype. Genet. Res. Int. 2012 317175PubMedGoogle Scholar
  149. Mawdesley-Thomas LE 1971 Neoplasia in fish: a review; in Current topics in comparative pathobiology, Vol. 1 (ed) TC Cheng (New York: Academic Press) pp 88–170Google Scholar
  150. McCulloch RS, Ashwell MS, O’Nan AT and Mente PL 2012 Identification of stable normalization genes for quantitative real-time PCR in porcine articular cartilage. J. Anim. Sci. Biotechnol. 3 36PubMedPubMedCentralCrossRefGoogle Scholar
  151. McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R, Kramer A, Martens A, Edwards JR and Challen GA 2016 Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol. Open 5 866–874PubMedPubMedCentralCrossRefGoogle Scholar
  152. McGrath LL, Vollmer SV, Kaluziak ST and Ayers J 2016 De novo transcriptome assembly for the lobster Homarus americanus and characterization of differential gene expression across nervous system tissues. BMC Genom. 17 63PubMedPubMedCentralCrossRefGoogle Scholar
  153. Möhrlen F, Baus S, Gruber A, Rackwitz H-R, Schnölzer M, Vogt G and Zwilling R 2001 Activation of pro-astacin. Immunological and model peptide studies on the processing of immature astacin, a zinc-endopeptidase from the crayfish Astacus astacus. Eur. J. Biochem. 268 2540–2546PubMedCrossRefGoogle Scholar
  154. Moshtaghi A, Rahi ML, Mather PB and Hurwood DA 2017 Understanding the genomic basis of adaptive response to variable osmotic niches in freshwater prawns: a comparative intraspecific RNA-seq analysis of Macrobrachium australiense. J. Heredity 108 544–552CrossRefGoogle Scholar
  155. Nagaraju GPC 2011 Reproductive regulators in decapod crustaceans: an overview. J. Exp. Biol. 214 3–16PubMedCrossRefGoogle Scholar
  156. Nakanishi T, Kato Y, Matsuura T and Watanabe H 2014 CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS ONE 9 e98363PubMedPubMedCentralCrossRefGoogle Scholar
  157. Nanjundiah V 2003 Phenotypic plasticity and evolution by genetic assimilation; in Origination of organismal form: beyond the gene in development and evolutionary biology (eds) GB Müller and SA Newman (Cambridge: MIT Press) pp 245–264Google Scholar
  158. Novitsky RA and Son MO 2016 The first records of Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] (Crustacea, Decapoda, Cambaridae) in Ukraine. Ecol. Montenegr. 5 44–46Google Scholar
  159. Nudelman F and Sommerdijk NAJM 2012 Biomineralization as an inspiration for materials chemistry. Angew. Chemie Int. Ed. 51 6582–6596CrossRefGoogle Scholar
  160. O’Neill RJW, O’Neill MJ and Graves JAM 1998 Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393 68–72PubMedCrossRefGoogle Scholar
  161. Pamuru RR, Rosen O, Manor R, Chung JS, Zmora N, Glazer L, Aflalo DE, Weil S, Tamone LS and Sagi A 2012 Stimulation of molt by RNA interference of the molt-inhibiting hormone in the crayfish Cherax quadricarinatus. Gen. Comp. Endocrinol. 178 227–236PubMedCrossRefGoogle Scholar
  162. Panksepp JB, Yue Z, Drerup C and Huber R 2003 Amine neurochemistry and aggression in crayfish. Microsc. Res. Tech. 60 360–368PubMedPubMedCentralCrossRefGoogle Scholar
  163. Papadopoulos D, Schneider D, Meier-Eiss J, Arber W, Lenski RE and Blot M 1999 Genomic evolution during a 10,000-generation experiment with bacteria. Proc. Natl. Acad. Sci. USA 96 3807–3812PubMedPubMedCentralCrossRefGoogle Scholar
  164. Park J-O, Pan J, Möhrlen F, Schupp M-O, Johnsen R, Baillie DL, Zapf R, Moerman DG and Hutter H 2010 Characterization of the astacin family of metalloproteases in C. elegans. BMC Dev. Biol. 10 14PubMedPubMedCentralCrossRefGoogle Scholar
  165. Pârvulescu L, Togor A, Lele S-F, Scheu S, Şinca D and Panteleit J 2017 First established population of marbled crayfish Procambarus fallax (Hagen, 1870) f. virginalis (Decapoda, Cambaridae) in Romania. BioInvasions Rec. 6 357–362CrossRefGoogle Scholar
  166. Peng J, Wei P, Zhang B, Zhao Y, Zeng D, Chen X, Li M and Chen X 2015 Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (Litopenaeus vannamei). BMC Genom. 16 1006PubMedPubMedCentralCrossRefGoogle Scholar
  167. Pertea M and Salzberg SL 2010 Between a chicken and a grape: estimating the number of human genes. Genome Biol. 1 206CrossRefGoogle Scholar
  168. Petell CJ, Alabdi L, He M, San Miguel P, Rose R and Gowher H 2016 An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation. Nucl. Acids Res. 44 7605–7617PubMedPubMedCentralCrossRefGoogle Scholar
  169. Piferrer F, Beaumont A, Falguière J-C, Flajšhans M, Haffray P and Colombo L 2009 Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293 125–156CrossRefGoogle Scholar
  170. Potok ME, Nix DA, Parnell TJ and Cairns BR 2013 Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153 759–772PubMedPubMedCentralCrossRefGoogle Scholar
  171. Prox J, Arnold P and Becker-Pauly C 2015 Meprin α and meprin β: procollagen proteinases in health and disease. Matrix Biol. 44–46 7–13PubMedCrossRefGoogle Scholar
  172. Raddatz G, Guzzardo PM, Olova N, Fantappié MR, Rampp M, Schaefer M, Reik W, Hannon GJ and Lyko F 2013 Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc. Natl. Acad. Sci. USA 110 8627–8631PubMedPubMedCentralCrossRefGoogle Scholar
  173. Rahi ML, Amin S, Mather PB and Hurwoo DH 2017 Candidate genes that have facilitated freshwater adaptation by palaemonid prawns in the genus Macrobrachium: identification and expression validation in a model species (M. koombooloomba). Peer J. 8 e2977CrossRefGoogle Scholar
  174. Ralston SH 2010 Genetics of osteoporesis. Ann. N.Y. Acad. Sci. 1192 181–189CrossRefGoogle Scholar
  175. Rassoulzadegan M and Cuzin F 2015 Epigenetic heredity: RNA-mediated modes of phenotypic variation. Ann. NY Acad. Sci. 1341 172–175CrossRefGoogle Scholar
  176. Rathore AS and Gupta RD 2015 Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015 791907PubMedPubMedCentralCrossRefGoogle Scholar
  177. Regier JC, Shultz JW and Kambic RE 2005 Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. Lond. B 272 395–401CrossRefGoogle Scholar
  178. Reiter LT, Potocki L, Chien S, Gribskov M and Bier E 2001 A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11 1114–1125PubMedPubMedCentralCrossRefGoogle Scholar
  179. Reynolds JD 2002 Growth and reproduction; in Biology of freshwater crayfish (ed) DM Holdich (Oxford: Blackwell) pp 152–191Google Scholar
  180. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, et al. 2015 Integrative analysis of 111 reference human epigenomes. Nature 518 317–330PubMedCentralCrossRefGoogle Scholar
  181. Robertson KD 2005 DNA methylation and human disease. Nat. Rev. Genet. 6 597–610PubMedCrossRefGoogle Scholar
  182. Robertson M and Richards C 2015 Non-genetic inheritance in evolutionary theory—the importance of plant studies. Non Genet. Inherit. 2 3–11CrossRefGoogle Scholar
  183. Rode AL and Babcock LE 2003 Phylogeny of fossil and extant freshwater crayfish and some closely related nephropid lobsters. J. Crust. Biol. 23 418–435CrossRefGoogle Scholar
  184. Roer R, Abehsera S and Sagi A 2015 Exoskeletons across the Pancrustacea: comparative morphology, physiology, biochemistry and genetics. Integr. Comp. Biol. 55 771–791PubMedCrossRefGoogle Scholar
  185. Roh TY, Ngau WC, Cui K, Landsman D and Zhao K 2004 High-resolution genome-wide mapping of histone modifications. Nat. Biotech. 22 1013–1016CrossRefGoogle Scholar
  186. Rossi DJ, Jamieson CHM and Weissman IL 2008 Stem cells and the pathways to aging and cancer. Cell 132 681–696PubMedCrossRefGoogle Scholar
  187. Roth TL 2013 Epigenetic mechanisms in the development of behavior: advances, challenges, and future promises of a new field. Dev Psychopathol. 25 1279–1291PubMedPubMedCentralCrossRefGoogle Scholar
  188. Saetan U, Sangket U, Deachamag P and Chotigeat W 2016 Ovarian transcriptome analysis of vitellogenic and non-vitellogenic female banana shrimp (Fenneropenaeus merguiensis). PLoS ONE 11 e0164724PubMedPubMedCentralCrossRefGoogle Scholar
  189. Sagi A, Manor R and Ventura T 2013 Gene silencing in crustaceans: from basic research to biotechnologies. Genes 4 620–645PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sandeman R and Sandeman D 2000 “Impoverished” and “enriched” living conditions influence the proliferation and survival of neurons in crayfish brain. J. Neurobiol. 45 215–226Google Scholar
  191. Sander JD and Joung JK 2014 CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32 347–355CrossRefGoogle Scholar
  192. Santos-Rebouças CB and Pimentel MMG 2007 Implication of abnormal epigenetic patterns for human diseases. Eur. J. Hum. Genet. 15 10–17PubMedCrossRefGoogle Scholar
  193. Sarmasik A, Jang I-K, Chun CZ, Lu JK and Chen TT 2001 Transgenic live-bearing fish and crustaceans produced by transforming immature gonads with replication-defective pantropic retroviral vectors. Mar. Biotechnol. 3 470–477CrossRefGoogle Scholar
  194. Sato F, Tsuchiya S, Meltzer SJ and Shimizu K 2011 MicroRNAs and epigenetics. FEBS J. 278 1598–1609PubMedCrossRefGoogle Scholar
  195. Sax DF and Brown JH 2000 The paradox of invasion. Glob. Ecol. Biogeogr. 9 363–371CrossRefGoogle Scholar
  196. Scholtz G 2016 Happy birthday! The first decade of Marmorkrebs research—results and perspectives; in Freshwater crayfish: global overview (eds) T Kawai, Z Faulkes and G Scholtz (Boca Raton: CRC Press) pp 3–12Google Scholar
  197. Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F and Vogt G 2003 Parthenogenesis in an outsider crayfish. Nature 421 806PubMedCrossRefGoogle Scholar
  198. Schön I, Rossetti G and Martens K 2009 Darwinulid ostracods: ancient asexual scandals or scandalous gossip? in: Lost sex: the evolutionary biology of parthenogenesis (eds) I Schön, K Martens and P van Dijk (Dordrecht: Springer) pp 217–240CrossRefGoogle Scholar
  199. Schübeler D 2015 Function and information content of DNA methylation. Nature 517 321–326PubMedCrossRefGoogle Scholar
  200. Schuhmacher A 2017 Aging epigenetics; in Handbook of epigenetics: the new molecular and medical genetics, 2nd ed. (ed) TO Tollefsbol (New York: Academic Press) pp 371–388CrossRefGoogle Scholar
  201. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W and Reik W 2012 Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos. Trans. R. Soc. Lond. B 368 20110330CrossRefGoogle Scholar
  202. Seitz R, Vilpoux K, Hopp U, Harzsch S and Maier G 2005 Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J. Exp. Zool. A 303 393–405CrossRefGoogle Scholar
  203. Seymour DK, Koenig D, Hagmann J, Becker C and Weigel D 2014 Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet. 10 e1004785PubMedPubMedCentralCrossRefGoogle Scholar
  204. Sharabi O, Manor R, Weil S, Aflalo ED, Lezer Y, Levy T, Aizen J, Ventura T, Mather PB, Khalaila I and Sagi A 2016 Identification and characterization of an insulin-like receptor involved in crustacean reproduction. Endocrinology 157 928–941CrossRefGoogle Scholar
  205. Shawi M and Autexier C 2008 Telomerase, senescence and ageing. Mech. Ageing 129 3–10CrossRefGoogle Scholar
  206. Shechter A, Berman A, Singer A, Freiman A, Grinstein M, Erez J, Aflalo ED and Sagi A 2008 Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Cherax quadricarinatus. Biol. Bull. 214 122–134PubMedCrossRefGoogle Scholar
  207. Shen H 2012 Mitogenomic analysis of decapod phylogeny (Crustacea, Malacostraca). Doctoral Thesis (Berlin: Humboldt-University Berlin)Google Scholar
  208. Shen H, Braband A and Scholtz G 2013 Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Physiol. Evol. 66 776–789CrossRefGoogle Scholar
  209. Shinji J, Miyanishi H, Gotoh H and Kaneko T 2016 Appendage regeneration after autotomy is mediated by Baboon in the crayfish Procambarus fallax f. virginalis Martin, Dorn, Kawai, Heiden and Scholtz, 2010 (Decapoda: Astacoidea: Cambaridae). J. Crust. Biol. 36 649–657CrossRefGoogle Scholar
  210. Shinji J, Miyanishi H, Gotoh H, Lavine M and Lavine L 2017 The role of the transcription factor Smox during appendage regeneration in the crayfish Procambarus fallax f. virginalis. In Fisheries Science for Future Generations, Symposium of the Japanese Society of Fisheries Science, 22–24 Sept. 2017, Abstract SP06-28 (Tokyo: Tokyo University of Marine Science and Technology)Google Scholar
  211. Sintoni S 2010 Neurogenesis in the brain of the marbled crayfish. Doctoral Thesis (Ulm: University of Ulm)Google Scholar
  212. Skinner MK 2015 Environmental epigenetics and a unified theory of the molecular aspects of evolution: a neo-Lamarckian concept that facilitates neo-Darwinian evolution. Genome Biol. Evol. 7 1296–1302PubMedPubMedCentralCrossRefGoogle Scholar
  213. Skinner MK, Gurerrero-Bosagna C, Muksitul Haque M, Nilsson EE, Koop JAH, Knutie SA and Clayton DH 2014 Epigenetics and the evolution of Darwin’s finches. Genome Biol. Evol. 6 1972–1989PubMedPubMedCentralCrossRefGoogle Scholar
  214. Song LS, Bian C, Luo YJ, Wang LL, You XX, Li J, Qiu Y, Ma XY, Zhu Z, Ma L, et al. 2016 Draft genome of the Chinese mitten crab, Eriocheir sinensis. GigaScience 2016 5CrossRefGoogle Scholar
  215. Sparks AK and Morado JF 1987 A putative carcinoma-like neoplasm in the hindgut of a red king crab, Paralithodes camtschatica. J. Invert. Pathol. 50 45–52CrossRefGoogle Scholar
  216. Spitsbergen JM and Kent ML 2003 The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations. Toxicol. Pathol. 31 (Suppl.) 62–87Google Scholar
  217. Sterchi EE, Stöcker W and Bond JS 2008 Meprins, membrane-bound and secreted astacin metalloproteinases. Mol. Asp. Med. 29 309–328CrossRefGoogle Scholar
  218. Stöcker W and Zwilling R 1995 Astacin. Meth. Enzymol. 248 305–325PubMedCrossRefGoogle Scholar
  219. Stöcker W, Grams F, Baumann U, Reinemer P, Gomis-Rüth F-X, McKay DB and Bode W 1995 The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily. Protein Sci. 4 823–840CrossRefGoogle Scholar
  220. Stoltz J-F, de Isla N, Li YP, Bensoussan D, Zhang L, Huselstein C, Chen Y, Decot V, Magdalou J, Li N, Reppel L and He Y 2015 Stem cells and regenerative medicine: myth or reality of the 21th century. Stem Cells Int. 2015 734731CrossRefGoogle Scholar
  221. Stubbs TM, Bonder MJ, Stark A-K, Krueger F, BI Ageing Clock Team, von Meyenn F, Stegle O and Reik W 2017 Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18 68PubMedPubMedCentralCrossRefGoogle Scholar
  222. Suzuki MM and Bird A 2008 DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9 465–476PubMedCrossRefGoogle Scholar
  223. Suzuki MM, Yoshinari A, Obara M, Takuno S, Shigenobu S, Sasakura Y, Kerr AR, Webb S, Bird A and Nakayama A 2013 Identical sets of methylated and nonmethylated genes in Ciona intestinalis sperm and muscle cells. Epigenet. Chromat. 6 38CrossRefGoogle Scholar
  224. Svoboda J, Mrugała A, Kozubíková-Balcarová E and Petrusek A 2017 Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: a review. J. Fish Dis. 40 127–140PubMedCrossRefGoogle Scholar
  225. Theissinger K, Falckenhayn C, Blande D, Toljamo A, Gutekunst J, Makkonen J, Jussila J, Lyko F, Schrimpf A, Schulz R and Kokko H 2016 De novo assembly and annotation of the freshwater crayfish Astacus astacus transcriptome. Mar. Genom. 28 7–10PubMedCrossRefGoogle Scholar
  226. Toon A, Pérez-Losada M, Schweitzer CE, Feldmann RM, Carlson M and Crandall KA 2010 Gondwanan radiation of the Southern Hemisphere crayfishes (Decapoda: Parastacidae): evidence from fossils and molecules. J. Biogeogr. 37 2275–2290CrossRefGoogle Scholar
  227. Turek M and Bringmann H 2014 Gene expression changes of Caenorhabditis elegans larvae during molting and sleep-like lethargus. PLoS ONE 9 e113269PubMedPubMedCentralCrossRefGoogle Scholar
  228. Usio N, Azuma N, Sasaki S, Oka T and Inoue M 2017 New record of Marmorkrebs from western Japan and its potential threats to freshwater ecosystems. Cancer 26 5–11Google Scholar
  229. VanArman PG 2003 Biology and ecology of epigean crayfish that inhabit Everglades environments: Procambarus alleni (Faxon) and Procambarus fallax (Hagen). PhD Thesis (Dania Beach: Nova Southeastern University)Google Scholar
  230. Van der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG, Jansen RC, Schmitz RJ, Colomé-Tatchéc M and Johannes F 2015 Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc. Natl. Acad. Sci. USA 112 6676–6681PubMedPubMedCentralCrossRefGoogle Scholar
  231. Van der Heiden CA and Dorn NJ 2017 Benefits of adjacent habitat patches to the distribution of a crayfish population in a hydro-dynamic wetland landscape. Aquat. Ecol. 51 219–233CrossRefGoogle Scholar
  232. Ventura T, Fitzgibbon Q, Battaglene S, Sagi A and Elizur A 2015 Identification and characterization of androgenic gland specific insulin-like peptide-encoding transcripts in two spiny lobster species: Sagmariasus verreauxi and Jasus edwardsii. Gen. Comp. Endocrinol. 214 126–133PubMedCrossRefGoogle Scholar
  233. Verbruggen B, Bickley LK, Santos EM, Tyler CR, Stentiford GT, Bateman KS and van Aerle R 2015 De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genom. 16 458PubMedPubMedCentralCrossRefGoogle Scholar
  234. Verhoeven KJF and Preite V 2014 Epigenetic variation in asexually reproducing organisms. Evolution 68 644–655PubMedCrossRefGoogle Scholar
  235. Vickaryous MK and Hall BK 2006 Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol. Rev. 81 425–455PubMedCrossRefGoogle Scholar
  236. Vijg J 2014 Somatic mutations, genome mosaicism, cancer and aging. Curr. Opin. Genet. Dev. 26 141–149PubMedPubMedCentralCrossRefGoogle Scholar
  237. Vilpoux K, Sandeman R and Harzsch S 2006 Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev Genes Evol. 216 209–223PubMedCrossRefGoogle Scholar
  238. Vogt G 1994 Life-cycle and functional cytology of the hepatopancreatic cells of Astacus astacus (Crustacea, Decapoda). Zoomorphology 114 83–101CrossRefGoogle Scholar
  239. Vogt G 2002 Functional anatomy; in Biology of freshwater crayfish (ed) DM Holdich (Oxford: Blackwell) pp 53–151Google Scholar
  240. Vogt G 2007 Exposure of the eggs to 17α-methyl testosterone reduced hatching success and growth and elicited teratogenic effects in postembryonic life stages of crayfish. Aquat. Toxicol. 85 291–296PubMedCrossRefGoogle Scholar
  241. Vogt G 2008a The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. J. Zool. 276 1–13CrossRefGoogle Scholar
  242. Vogt G 2008b Investigation of hatching and early post-embryonic life of freshwater crayfish by in vitro culture, behavioral analysis, and light and electron microscopy. J. Morphol. 269 790–811PubMedCrossRefGoogle Scholar
  243. Vogt G 2008c How to minimize formation and growth of tumours: potential benefits of decapod crustaceans for cancer research. Int. J. Cancer 123 2727–2734PubMedCrossRefGoogle Scholar
  244. Vogt G 2010 Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontology 11 643–669CrossRefGoogle Scholar
  245. Vogt G 2011 Marmorkrebs: natural crayfish clone as emerging model for various biological disciplines. J. Biosci. 36 377–382PubMedCrossRefGoogle Scholar
  246. Vogt G 2012a Ageing and longevity in the Decapoda (Crustacea): a review. Zool. Anz. 251 1–25CrossRefGoogle Scholar
  247. Vogt G 2012b Hidden treasures in stem cells of indeterminately growing bilaterian invertebrates. Stem Cell Rev. Rep. 8 305–317CrossRefGoogle Scholar
  248. Vogt G 2013 Abbreviation of larval development and extension of brood care as key features of the evolution of freshwater Decapoda. Biol. Rev. 88 81–116PubMedCrossRefGoogle Scholar
  249. Vogt G 2015a Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J. Biosci. 40 159–204PubMedCrossRefGoogle Scholar
  250. Vogt G 2015b Bimodal annual reproduction pattern in laboratory-reared marbled crayfish. Invert. Reprod. Dev. 59 218–223CrossRefGoogle Scholar
  251. Vogt G 2016 Research on stem cells, aging, cancer resistance, and epigenetics in marbled crayfish and relatives. Potential benefits for human biology and medicine; in Freshwater crayfish: global overview (eds) T Kawai, Z Faulkes and G Scholtz (Boca Raton: CRC Press) pp 115–157Google Scholar
  252. Vogt G 2017a Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Environ. Epigenet. 3 dvx002CrossRefPubMedPubMedCentralGoogle Scholar
  253. Vogt G 2017b Evolution of epigenetic mechanisms in animals and their role in speciation; in Handbook of epigenetics: the new molecular and medical genetics, 2nd ed. (ed) TO Tollefsbol (New York: Academic Press) pp 409–426CrossRefGoogle Scholar
  254. Vogt G 2017c An overview of sexual systems; in The natural history of the Crustacea. Vol. 6: Reproductive biology (eds) R Cothran and M Thiel (New York: Oxford University Press) in pressGoogle Scholar
  255. Vogt G and Tolley L 2004 Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J. Morphol. 262 566–582PubMedCrossRefGoogle Scholar
  256. Vogt G, Stöcker W, Storch V and Zwilling R 1989 Biosynthesis of Astacus protease, a digestive enzyme from crayfish. Histochem. 91 373–381CrossRefGoogle Scholar
  257. Vogt G, Tolley L and Scholtz G 2004 Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J. Morphol. 261 286–311PubMedCrossRefGoogle Scholar
  258. Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ and Schubart CD 2008 Production of different phenotypes from the same genotype in the same environment by developmental variation. J. Exp. Biol. 211 510–523PubMedCrossRefGoogle Scholar
  259. Vogt G, Raddatz G, Falckenhayn C, Hanna K, Musch T and Lyko F 2013 Ökologische Anpassung invasiver Arten durch epigenetische Mechanismen: ein Teilaspekt des Marmorkrebs-Projekts am Deutschen Krebsforschungszentrum Heidelberg; in Tagungsband Internationale Flusskrebstagung (Aachen: Biologische Station StädteRegion Aachen) pp 109–113Google Scholar
  260. Vogt G, Falckenhayn C, Schrimpf A, Schmid K, Hanna K, Panteleit J, Helm M, Schulz R and Lyko F 2015 The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biol. Open 4 1583–1594PubMedPubMedCentralCrossRefGoogle Scholar
  261. Vrana PB 2007 Genomic imprinting as a mechanism of reproductive isolation in mammals. J. Mammal. 88 5–23CrossRefGoogle Scholar
  262. Wang Y, Liu H and Sun Z 2017 Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol. Rev. 92 2084–2111Google Scholar
  263. Watanabe H and Tokuda G 2001 Animal cellulases. Cell. Mol. Life Sci. 58 1167–1178PubMedCrossRefGoogle Scholar
  264. Weber-Lehmann J, Schilling E, Gradl G, Richter DC, Wiehler J and Rolf B 2014 Finding the needle in the haystack: differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci. Int. Genet. 9 42–46PubMedCrossRefGoogle Scholar
  265. Weiss DJ 2014 Current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells 32 16–25PubMedPubMedCentralCrossRefGoogle Scholar
  266. Werner U 1998 Garnelen, Krebse und Krabben im Süßwasseraquarium (Möhrfelden-Walldorf: Aqualog Verlag)Google Scholar
  267. Xia L, Ma S, Zhang Y, Wang T, Zhou M, Wang Z and Zhang J 2015 Daily variation in global and local DNA methylation in mouse livers. PLoS ONE 10 e0118101PubMedPubMedCentralCrossRefGoogle Scholar
  268. Xu S, Spitze K, Ackerman MS, Ye Z, Bright L, Keith N, Jackson CE, Shaw JR and Lynch M 2015 Hybridization and the origin of contagious asexuality in Daphnia pulex. Mol. Biol. Evol. 32 3215–3225PubMedPubMedCentralGoogle Scholar
  269. Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, Ruan K, Wang F, Xu G-L and Hu R 2016 CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2 16009PubMedPubMedCentralCrossRefGoogle Scholar
  270. Yagi S, Hirabayashi K, Sato S, Li W, Takahashi Y, Hirakawa T, Wu G, Hattori N, Hattori N, Ohgane J, Tanaka S, Liu XS and Shiota K 2008 DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) in mouse promoter regions demonstrating tissue-specific gene expression. Genome Res. 18 1969–1978PubMedPubMedCentralCrossRefGoogle Scholar
  271. Yao W-D and Wu C-F 2014 Exploring the genetic underpinnings of brain and behavioral disorders. J. Neurogenet. 28 1–4PubMedPubMedCentralCrossRefGoogle Scholar
  272. Ye Z, Xu S, Spitze K, Asselman J, Jiang X, Ackerman MS, Lopez J, Harker B, Raborn RT, Thomas WK, Ramsdell J, Pfrender ME and Lynch M 2017 A new reference genome assembly for the microcrustacean Daphnia pulex. Genes Genomes Genet. 7 1405–1416Google Scholar
  273. Yuan J, Zhang X, Liu C, Sun X, Sivaramasamy E, Li F and Xiang J 2016 Comparative genomics analysis of decapod shrimps in the Pancrustacea clade. Biochem. Syst. Ecol. 64 111e121CrossRefGoogle Scholar
  274. Yuan J, Gao Y, Zhang X, Wei J, Liu C, Li F and Xiang J 2017 Genome sequences of marine shrimp Exopalaemon carinicauda Holthuis provide insights into genome size evolution of Caridea. Mar. Drugs 15 213PubMedCentralCrossRefGoogle Scholar
  275. Yuan J, Zhang X, Liu C, Yua Y, Wei J, Lia F and Xiang J 2018 Genomic resources and comparative analyses of two economical penaeid shrimp species, Marsupenaeus japonicus and Penaeus monodon. Mar. Genom. in pressGoogle Scholar
  276. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, et al. 2012 The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490 49–54PubMedCrossRefGoogle Scholar
  277. Zhang B, Zhou Y, Lin N, Lowdon RF, Hong C, Nagarajan RP, Cheng JB, Li D, Stevens M, Lee HJ, et al. 2013 Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Res. 23 1522–1540PubMedPubMedCentralCrossRefGoogle Scholar
  278. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai, LT-Y, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A and Meissner A 2013 Charting a dynamic DNA methylation landscape of the human genome. Nature 500 477–481PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany

Personalised recommendations