Advertisement

Journal of Biosciences

, Volume 42, Issue 4, pp 527–530 | Cite as

What history tells us XLIV: The construction of the zinc finger nucleases

  • Michel Morange
Series
  • 134 Downloads

Introduction

In three previous contributions, I tried to show how complex and tortuous had been the historical process that led to the magic tool CRISPR-Cas9 (Morange 2015a, b, 2016). In particular, it was the result of an unexpected convergence between the study of bacterial and archaeal sequences later shown to be involved in the immunity against bacteriophages, and the slow development of highly specific endonucleases. In this second root of the development of the CRISPR-Cas9 magic tool, zinc finger nucleases and their designer, Srinivasan Chandrasegaran, had the major role. In three articles published between 1992 and 1996 in the Proceedings of the National Academy of Sciences of the United States, he conceived and developed a radically new type of endonuclease (Li et al.1992; Kim and Chandrasegaran 1994; Kim et al.1996). He also described the multiple potential applications of these new tools. It was a wonderful study in synthetic biology, before the name was introduced at the...

Keywords

CRISPR-Cas9 homologous recombination meganucleases protein domains restriction enzymes synthetic biology zinc finger 

Notes

Acknowledgements

I am indebted to David Marsh for his critical reading of the manuscript.

References

  1. Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim Y-G and Chandrasegaran S 2001 Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21 289–297CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S Ray S, et al. 2009 Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 326 1509–1512CrossRefPubMedGoogle Scholar
  3. Chandrasegaran S and Carroll D 2016 Origins of programmable nucleases for genome engineering. J. Mol. Biol. 428 963–989CrossRefPubMedGoogle Scholar
  4. Choulika A, Perrin A, Dujon B and Nicolas J-F 1995 Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15 1968–1973CrossRefPubMedPubMedCentralGoogle Scholar
  5. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, et al. 2010 Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 757–761CrossRefPubMedPubMedCentralGoogle Scholar
  6. Colleaux L, D’Auriol L, Galibert F and Dujon B 1988 Recognition and cleavage site of the intron-encoded omega transposase. Proc. Natl. Acad. Sci. USA 85 6022–6026CrossRefPubMedPubMedCentralGoogle Scholar
  7. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH and Chandrasegaran S 2005 Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33 5978–5990CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fields S and Song O-K 1989 A novel genetic system to detect protein-protein interactions. Nature 340 245–246CrossRefPubMedGoogle Scholar
  9. Gasiunas G, Barrangou R, Horvath P and Siksnys V 2012 Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109 E2579–E2586CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jacquier A and Dujon B 1985 An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41 383–394CrossRefPubMedGoogle Scholar
  11. Jinek M, Chylinski K, Fonfara I, Fauer M, Doudna JA and Charpentier C 2012 A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 816–821CrossRefPubMedGoogle Scholar
  12. Kim Y-G and Chandrasegaran S 1994 Chimeric restriction endonuclease. Proc. Natl. Acad. Sci. USA 91 883–887CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kim Y-G, Cha J and Chandrasegaran S 1996 Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93 1156–1160CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lander ES 2016 The heroes of CRISPR. Cell 164 18–28CrossRefPubMedGoogle Scholar
  15. Lazowska J, Jacq C and Slonimski PP 1980 Sequence of introns and flanking exons in wild-type and box3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron. Cell 22 333–348CrossRefPubMedGoogle Scholar
  16. Li L, Wu LP and Chandrasegaran S 1992 Functional domains in Fok I restriction endonuclease. Proc. Natl. Acad. Sci. USA 89 4275–4279CrossRefPubMedPubMedCentralGoogle Scholar
  17. Miller J, McLachlan AD and Klug A 1985 Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4 1609–1614PubMedPubMedCentralGoogle Scholar
  18. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, et al. 2011 A TALE nuclease architecture for efficient genome editing. Nature Biotechnol. 29 143–148CrossRefGoogle Scholar
  19. Monteilhet C, Perrin A, Thierry A, Colleaux L and Dujon B 1990 Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron. Nucleic Acids Res. 18 1407–1413CrossRefPubMedPubMedCentralGoogle Scholar
  20. Morange M 2015a CRISPR-Cas: the discovery of an immune system in prokaryotes. J. Biosci. 40 3–6CrossRefPubMedGoogle Scholar
  21. Morange M 2015b CRISPR-Cas: From a prokaryotic immune system to a universal genome editing tool. J. Biosci. 40 829–832CrossRefPubMedGoogle Scholar
  22. Morange M 2016 The success story of the expression ‘genome editing’. J. Biosci. 41 9–11CrossRefPubMedGoogle Scholar
  23. Moscou MJ and Bogdanove AJ 2009 A simple cipher governs DNA recognition by TAL effectors. Science 326 1501CrossRefPubMedGoogle Scholar
  24. Pavletich NP and Pabo CO 1991 Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252 809–817CrossRefPubMedGoogle Scholar
  25. Plessis A, Perrin A, Haber JE and Dujon B 1992 Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130 451–460PubMedPubMedCentralGoogle Scholar
  26. Puchta H, Dujon B and Hohn B 1993 Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 21 5034–5040CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rouet P, Smith F and Jasin M 1994 Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91 6064–6068CrossRefPubMedPubMedCentralGoogle Scholar
  28. Thierry A, Perrin A, Boyer J, Fairhead C, Dujon B, Frey B and Schmitz G 1991 Cleavage of yeast and bacteriophage T7 genomes at a single site using the rare cutter endonuclease I-Sce I. Nucleic Acids Res. 19 189–190CrossRefPubMedPubMedCentralGoogle Scholar
  29. Thierry A and Dujon B 1992 Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes. Nucleic Acids Res. 20 5625–5631CrossRefPubMedPubMedCentralGoogle Scholar
  30. Urnov FD, Miller JC, Lee Y-L, Beauséjour CM, Rock JM, Augustus S et al. 2005 Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435 646–651CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Centre Cavaillès, République des Savoirs: Lettres, Sciences, Philosophie USR 3608Ecole Normale SupérieureParis Cedex 05France

Personalised recommendations