Advertisement

Journal of Biosciences

, Volume 42, Issue 4, pp 575–584 | Cite as

MicroRNA-486-5p suppresses TGF-β2-induced proliferation, invasion and epithelial–mesenchymal transition of lens epithelial cells by targeting Smad2

  • Bei Liu
  • Jianhua Sun
  • Xiaoqin Lei
  • Zhongqiao Zhu
  • Cheng PeiEmail author
  • Li Qin
Article

Abstract

The pathological development of lens epithelial cells (LECs) leads to posterior capsular opacification (PCO). This study was undertaken to investigate the effects of microRNA-486-5p (miR-486-5p) on TGF-β2-induced proliferation, invasion and epithelial-mesenchymal transition (EMT) in the lens epithelial cell line SRA01/04, and to explore the underlying molecular mechanisms. The expression of miR-486-5p in TGF-β2-induced SRA01/04 cells was down-regulated, and the expression of Smad2, p-Smad2 and p-Smad3 was up-regulated. A dual-luciferase reporter assay revealed that miR-486-5p directly targets the 3′-UTR of Smad2. MiR-486-5p mimic transfection markedly down-regulated the expression levels of Smad2, thus inhibiting the expression of p-Smad2 and p-Smad3. MiR-486-5p overexpression in SRA01/04 cells markedly suppressed TGF-β2-induced proliferation and invasion, inhibited protein expression of CDK2 and CDK4, down-regulated fibronectin, α-SMA and vimentin and up-regulated E-cadherin; these effects were partly reversed by Smad2 overexpression. In short, these data show that miR-486-5p overexpression can inhibit TGF-β2-induced proliferation, invasion and EMT in SRA01/04 cells by repressing Smad2/Smad3 signalling, implying that miR-486-5p may be an effective target to interfere in the progression of PCO.

Keywords

Cell invasion cell proliferation epithelial–mesenchymal transition lens epithelial cells miR-486-5p 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (81470614) and Natural Science Foundation of Shaanxi (2012JM4023).

References

  1. Alvarez-Garcia I and Miska EA 2005 MicroRNA functions in animal development and human disease. Development 132 4653–4662CrossRefPubMedGoogle Scholar
  2. Awasthi N, Guo S and Wagner B 2009 Posterior capsular opacification: a problem reduced but not yet eradicated. Arch. Ophthalmol. 127 555–562CrossRefPubMedGoogle Scholar
  3. Awasthi N and Wagner B 2006 Suppression of human lens epithelial cell proliferation by proteasome inhibition, a potential defense against posterior capsular opacification. Invest. Ophthalmol. Visual Sci. 47 4482–4489CrossRefGoogle Scholar
  4. Bartel DP 2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 281–297CrossRefPubMedGoogle Scholar
  5. Dawes LJ, Angell H, Sleeman M, Reddan JR and Wormstone IM 2007 TGFβ isoform dependent Smad2/3 kinetics in human lens epithelial cells: a cellomics analysis. Exp. Eye Res. 84 1009–1012CrossRefPubMedGoogle Scholar
  6. De Iongh R, Wederell E, Lovicu F and McAvoy J 2005 Transforming growth factor-β-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs 179 43–55CrossRefPubMedGoogle Scholar
  7. Filipowicz W, Bhattacharyya SN and Sonenberg N 2008 Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genetics 9 102–114CrossRefPubMedGoogle Scholar
  8. Hales AM, Schulz MW, Chamberlain CG and McAvoy JW 1994 TGF-β1 induces lens cells to accumulate α-smooth muscle actin, a marker for subcapsular cataracts. Curr. Eye Res. 13 885–890CrossRefPubMedGoogle Scholar
  9. Hoffmann A, Huang Y, Suetsugu-Maki R, Ringelberg CS, Tomlinson CR, Rio-Tsonis D and Tsonis PA 2012 Implication of the miR-184 and miR-204 competitive RNA network in control of mouse secondary cataract. Mol. Med. 18 528–538CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hou Q, Tang J, Wang Z, Wang C, Chen X, Hou L, Da Dong X and Tu L 2013 Inhibitory effect of MicroRNA-34a on retinal pigment epithelial cell proliferation and MigrationmiR-34a inhibits RPE cell proliferation and migration. Invest. Ophthalmol. Visual Sci. 54 6481–6488CrossRefGoogle Scholar
  11. Huang W-R, Fan X-X and Tang X 2011 SiRNA targeting EGFR effectively prevents posterior capsular opacification after cataract surgery. Mol. Vis. 17 2349–2355PubMedPubMedCentralGoogle Scholar
  12. Ignotz RA and Massague J 1986 Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261 4337–4345PubMedGoogle Scholar
  13. Lee EH, Seomun Y, Hwang KH, Kim JE, Kim IS, Kim JH and Joo CK 2000 Overexpression of the transforming growth factor-β–inducible gene βig-h3 in anterior polar cataracts. Invest. Ophthalmol. Visual Sci. 41 1840–1845Google Scholar
  14. Liu C, Li M, Hu Y, Shi N, Yu H, Liu H and Lian H 2016 miR-486–5p attenuates tumor growth and lymphangiogenesis by targeting neuropilin-2 in colorectal carcinoma. Oncotargets Therapy 9 2865PubMedPubMedCentralGoogle Scholar
  15. Malumbres M and Barbacid M 2005 Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30 630–641CrossRefPubMedGoogle Scholar
  16. Massagué J 2000 How cells read TGF-β signals. Nat. Rev. Mol. Cell Biol. 1 169–178CrossRefPubMedGoogle Scholar
  17. Massagué J and Wotton D 2000 Transcriptional control by the TGF-β/Smad signaling system. EMBO J 19 1745–1754CrossRefPubMedPubMedCentralGoogle Scholar
  18. Milazzo S, Grenot M and Benzerroug M 2014 [Posterior capsule opacification]. J Francais D’ophtalmologie 37 825–830CrossRefGoogle Scholar
  19. Pau H, Novotny G and Kern W 1986 The lenticular capsule and cellular migration in anterior capsular cataract. Graefe’s Arch. Clin. Exp. Ophthalmol. 224 118–121CrossRefGoogle Scholar
  20. Saika S, Ikeda K, Yamanaka O, Sato M, Muragaki Y, Ohnishi Y, Ooshima A, Nakajima Y, Namikawa K and Kiyama H 2004 Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial–mesenchymal transition of lens epithelium in mice. Lab. Invest. 84 1259–1270CrossRefPubMedGoogle Scholar
  21. Saika S, Miyamoto T, Ishida I, Shirai K, Ohnishi Y, Ooshima A and McAvoy J 2002 TGFβ-Smad signalling in postoperative human lens epithelial cells. Br. J. Ophthalmol. 86 1428–1433CrossRefPubMedPubMedCentralGoogle Scholar
  22. Shi Y and Massagué J 2003 Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113 685–700CrossRefPubMedGoogle Scholar
  23. Varma SD, Kovtun S, Hegde K, Yin J and Ramnath J 2012 Effect of high sugar levels on miRNA expression. Studies with galactosemic mice lenses. Mol. Vis. 18 1609–1618PubMedPubMedCentralGoogle Scholar
  24. Wang Y, Li W, Zang X, Chen N, Liu T, Tsonis PA and Huang Y 2013 MicroRNA-204–5p Regulates Epithelial-to-Mesenchymal Transition during Human Posterior Capsule Opacification by Targeting SMAD4MicroRNA-204–5p targets SMAD4. Invest. Ophthalmol. Visual Sci. 54 323–332CrossRefGoogle Scholar
  25. Wolf L, Gao CS, Gueta K, Xie Q, Chevallier T, Podduturi NR, Sun J, Conte I, Zelenka PS and Ashery-Padan R 2013 Identification and characterization of FGF2-dependent mRNA: microRNA networks during lens fiber cell differentiation. G3 3 2239–2255CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wormstone IM 2002 Posterior capsule opacification: a cell biological perspective. Exp. Eye Res. 74 337–347CrossRefPubMedGoogle Scholar
  27. Wormstone IM, Tamiya S, Anderson I and Duncan G 2002 TGF-β2–induced matrix modification and cell transdifferentiation in the human lens capsular bag. Invest. Ophthalmol. Visual Sci. 43 2301–2308Google Scholar
  28. Wormstone IM, Wang L and Liu CS 2009 Posterior capsule opacification. Exp. Eye Res. 88 257–269CrossRefPubMedGoogle Scholar
  29. Xu H, Chen M, Forrester JV and Lois N 2011 Cataract surgery induces retinal pro-inflammatory gene expression and protein secretion. Invest. Ophthalmol. Visual Sci. 52 249–255CrossRefGoogle Scholar
  30. Yang Y, Liu L, Cai J, Wu J, Guan H, Zhu X, Yuan J, Chen S and Li M 2013 Targeting Smad2 and Smad3 by miR-136 suppresses metastasis-associated traits of lung adenocarcinoma cells. Oncology Res. 21 345–352CrossRefGoogle Scholar
  31. Yi Y, Lu X, Chen J, Jiao C, Zhong J, Song Z, Yu X and Lin B 2016 Downregulated miR-486–5p acts as a tumor suppressor in esophageal squamous cell carcinoma. Exp. Therapeutic Med. 12 3411CrossRefGoogle Scholar
  32. Zhang X, Zhang T, Yang K, Zhang M and Wang K 2016 miR-486-5p suppresses prostate cancer metastasis by targeting Snail and regulating epithelial–mesenchymal transition. Oncotargets Therapy 9 6909–6914CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Bei Liu
    • 1
    • 2
  • Jianhua Sun
    • 3
  • Xiaoqin Lei
    • 2
  • Zhongqiao Zhu
    • 2
  • Cheng Pei
    • 1
    Email author
  • Li Qin
    • 1
  1. 1.Department of Ophthalmology, the First Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
  2. 2.Shaanxi Ophthalmic Medical Center, Xi’an No.4 Hospital, Affiliated Guangren HospitalXi’an Jiaotong UniversityXi’anChina
  3. 3.Assisted Reproduction CenterNorthwest Women’s and Children’s HospitalXi’anChina

Personalised recommendations