Journal of Biosciences

, Volume 41, Issue 4, pp 759–786 | Cite as

Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals

  • Prim B Singh


Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatin-like complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed.


Epigenetics genomic imprinting heterochromatin HP1 KRAB-ZFP 

Abbreviations used








Alpha Thalassemia/Mental Retardation Syndrome X-Linked


chromatin assembly factor 1




controlling element


chromocenter formation


CpG islands


chromo shadow domain


DNA adenine methyltransferase identification


Death Domain associated protein


maintenance DNA methyltransferase 1


de novo DNA methyltransferase 3A


de novo DNA methyltransferase 3B


DNA methyltransferase 3L


embryonic stem


K9H3 HMTase


G9a-like protein K9H3 HMTase


germline differentially methylated regions


di-methylated lysine 9 on histone H3


tri-methylated lysine 9 on histone H3


phosphorylation of serine 10 on histone H3


tri-methylated lysine 20 on histone H4


histone methyltransferases


histone deactylases


hinge region


Heterochromatin Protein 1


imprinting control region


induced pluripotent stem cell


KRAB-associated protein 1




Krüppel-associated box (KRAB) domain zinc-finger proteins


KRAB domain-zinc finger


long interspersed elements


long non-coding RNA


long terminal repeat




murine embryonic fibroblasts


murine endogenous retrovirus L


nucleolar organizer region


Nuclear protein 95


Nucleosome Remodelling histone Deacetylase


origin of replication complex


Plannococcus citri heterochromatin protein 2


proliferating cell nuclear antigen


primordial germ cells


plant homeodomain


position-effect variegation




pro-nuclear stage


peri-nucleolar bodies


Proline/Any/Valine/Any/Leucine penta-peptide motif


Ring-finger B Box-Coiled Coil domain

reverse majSat

reverse major satellite sequence


Ring Finger protein LIM Domain interacting


reprogramming resistant regions


somatic cell nuclear transfer


SET Domain Bifurcated 1 K9H3 HMTase


small interfering RNA


SWI/SNF-Related, Matrix-Associated Actin-Dependent Regulator of Chromatin, Subfamily A, Containing DEAD/H Box 1


Small ubiquitin-related modifier 2


mammalian suvar K9H3 HMTase 1 and 2


Ten-eleven translocation dioxygenase


Ubiquitin conjugating enzyme 2i


paternal X-chromosome


maternal X chromosome


zygotic genome activation


Zinc Finger and SCAN domain-containing 4.



I thank Dr William Swaney for helpful discussions, especially with regards to early drafts of the figures. Ashley Clarke drew the figures. I also thank Dr Vladimir Shetyn for his kindness in obtaining many references when I needed them. I am indebted to Prof H Sharat Chandra for his hospitality while on sabbatical at the Centre for Human Genetics, Bengaluru, India, where the seed for this review was planted.


  1. Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, et al. 1999 Functional mammalian homologues of the Drosophila PEV‐modifier Su (var) 3‐9 encode centromere‐associated proteins which complex with the heterochromatin component M31. EMBO J. 18 1923–1938PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aguirre-Lavin T, Adenot P, Bonnet-Garnier A, Lehmann G, Fleurot R, Boulesteix C, et al. 2012 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev. Biol. 12 1CrossRefGoogle Scholar
  3. Alabert C and Groth A 2012 Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol. 13 153–167PubMedCrossRefGoogle Scholar
  4. Almouzni G and Probst AV 2011 Heterochromatin maintenance and establishment: lessons from the mouse pericentromere. Nucleus 2 332–338Google Scholar
  5. Alonso MBD, Zoidl G, Taveggia C, Bosse F, Zoidl C, Rahman M, et al. 2004 Identification and characterization of ZFP-57, a novel zinc finger transcription factor in the mammalian peripheral nervous system. J. Biol. Chem. 279 25653–25664PubMedCrossRefGoogle Scholar
  6. Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PWS, D’Souza Z, et al. 2016 De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat. Cell Biol. 18 225–233PubMedPubMedCentralCrossRefGoogle Scholar
  7. Annunziato AT 2012 Assembling chromatin: the long and winding road. Biochim. Biophys. Acta, Gene Regul. Mech. 1819 196–210CrossRefGoogle Scholar
  8. Anvar Z, Cammisa M, Riso V, Baglivo I, Kukreja H, Sparago A, et al. 2016 ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells. Nucleic Acids Res. 44 1118–1132PubMedCrossRefGoogle Scholar
  9. Arakawa T, Nakatani T, Oda M, Kimura Y, Sekita Y, Kimura T, et al. 2015 Stella controls chromocenter formation through regulation of Daxx expression in 2-cell embryos. Biochem. Biophys. Res. Commun. 466 60–65PubMedCrossRefGoogle Scholar
  10. Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, Dumas M, et al. 2015 EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome Res., doi: 10.1101/gr.198291.115
  11. Aucott R, Bullwinkel J, Yu Y, Shi W, Billur M, Brown JP, et al. 2008 HP1-β is required for development of the cerebral neocortex and neuromuscular junctions. J. Cell Biol. 183 597–606PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, et al. 2003 Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 17 1855–1869PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bachman KE, Rountree MR and Baylin SB 2001 Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem. 276 32282–32287PubMedCrossRefGoogle Scholar
  14. Baker WK 1963 Genetic control of pigment differentiation in somatic cells. Am. Zool. 57–69Google Scholar
  15. Baker WK 1968 Position-effect variegation. Adv. Genet. 14 133–169PubMedGoogle Scholar
  16. Barlow DP and Bartolomei MS 2014 Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6 a018382PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bateson W 1909 Mendel's principles of heredity. (Cambridge University Press)Google Scholar
  18. Baumann C, Schmidtmann A, Muegge K and De La Fuente R 2008 Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia. BMC Mol. Biol. 9 1CrossRefGoogle Scholar
  19. Becker JS, Nicetto D and Zaret KS 2016 H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet. 32 29–41PubMedCrossRefGoogle Scholar
  20. Benetti R, García-Cao M and Blasco MA 2007 Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat. Genet. 39 243–250PubMedCrossRefGoogle Scholar
  21. Bestor TH, Edwards JR and Boulard M 2015 Notes on the role of dynamic DNA methylation in mammalian development. Proc. Natl. Acad. Sci. 112 6796–6799PubMedCrossRefGoogle Scholar
  22. Bierhoff H, Dammert MA, Brocks D, Dambacher S, Schotta G and Grummt I 2014 Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol. Cell 54 675–682Google Scholar
  23. Bilodeau S, Kagey MH, Frampton GM, Rahl PB and Young RA 2009 SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 23 2484–2489PubMedPubMedCentralCrossRefGoogle Scholar
  24. Blasco MA 2007 The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 8 299–309PubMedCrossRefGoogle Scholar
  25. Bochman ML and Schwacha A 2009 The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol. Mol. Biol. Rev. 73 652–683PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bongiorni S, Cintio O and Prantera G 1999 The relationship between DNA methylation and chromosome imprinting in the coccid Planococcus citri. Genetics 151 1471–1478Google Scholar
  27. Bongiorni S, Mazzuoli M, Masci S and Prantera G 2001 Facultative heterochromatization in parahaploid male mealybugs: involvement of a heterochromatin-associated protein. Development 128 3809–3817Google Scholar
  28. Bongiorni S, Pasqualini B, Taranta M, Singh PB and Prantera G 2007 Epigenetic regulation of facultative heterochromatinisation in Planococcus citri via the Me (3) K9H3-HP1-Me (3) K20H4 pathway. J. Cell Sci. 120 1072–1080PubMedCrossRefGoogle Scholar
  29. Bongiorni S, Pugnali M, Volpi S, Bizzaro D, Singh PB and Prantera G 2009 Epigenetic marks for chromosome imprinting during spermatogenesis in coccids. Chromosoma. 118 501–512PubMedCrossRefGoogle Scholar
  30. Booth W, Smith CF, Eskridge PH, Hoss SK, Mendelson JR 3rd and Schuett GW 2012 Facultative parthenogenesis discovered in wild vertebrates. Biol Lett. 23 983–995Google Scholar
  31. Borkent M, Bennett BD, Lackford B, Bar-Nur O, Brumbaugh J, Wang L, et al. 2016 A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Rep. 6 704–716CrossRefGoogle Scholar
  32. Brown SW 1966 Heterochromatin. Science. 151 417–425PubMedCrossRefGoogle Scholar
  33. Brown SW and Nur U 1964 Heterochromatic chromsomes in the coccids. Science 145 3809–3817Google Scholar
  34. Brown JP, Bullwinkel J, Baron-Lühr B, Billur M, Schneider P, Winking H and Singh PB 2010 HP1γ function is required for male germ cell survival and spermatogenesis. Epigenetics Chromatin 3 1Google Scholar
  35. Buglia G, Predazzi V and Ferrar M 1999 Cytosine methylation is not involved in the heterochromatization of the paternal genome of mealybug Planococcus citri. Chromosom. Res. 7 71–73CrossRefGoogle Scholar
  36. Burton A and Torres-Padilla M-E 2010 Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief. Funct. Genomics 9 444–454Google Scholar
  37. Cammas F, Oulad-Abdelghani M, Vonesch J-L, Huss-Garcia Y, Chambon P and Losson R 2002 Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J. Cell Sci. 115 3439–3448PubMedGoogle Scholar
  38. Cammas F, Janoshazi A, Lerouge T and Losson R 2007 Dynamic and selective interactions of the transcriptional corepressor TIF1 beta with the heterochromatin protein HP1 isotypes during cell differentiation. Differentiation 75 627–637Google Scholar
  39. Casanova M, Pasternak M, El Marjou F, Le Baccon P, Probst AV and Almouzni G 2013 Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Rep. 4 1156–1167PubMedCrossRefGoogle Scholar
  40. Cattanach B and Kirk M 1985 Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315 496–498Google Scholar
  41. Chadwick LH, Chadwick BP, Jaye DL and Wade PA 2009 The Mi-2/NuRD complex associates with pericentromeric heterochromatin during S phase in rapidly proliferating lymphoid cells. Chromosoma 118 445–457Google Scholar
  42. Chakrabarti R, Sanyal S, Ghosh A, Bhar K, Das C and Siddhanta A 2015 Phosphatidylinositol-4-phosphate 5-Kinase 1α Modulates Ribosomal RNA Gene Silencing through Its Interaction with Histone H3 Lysine 9 Trimethylation and Heterochromatin Protein HP1-α. J. Biol. Chem. 290 20893–20903PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chambers EV, Bickmore WA and Semple CA 2013 Divergence of mammalian higher order chromatin structure is associated with developmental loci. PLoS Comput. Biol. 9 e1003017PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chandra HS and Brown SW 1975 Chromosome imprinting and the mammalian X chromosome. Nature. 253 165–168PubMedCrossRefGoogle Scholar
  45. Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, et al. 2015 The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528 218–224Google Scholar
  46. Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, et al. 2013 H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 45 34–42PubMedCrossRefGoogle Scholar
  47. Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB and Misteli T 2003 Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299 721–725Google Scholar
  48. Cho S, Park JS, Kwon S and Kang Y-K 2012 Dynamics of Setdb1 expression in early mouse development. Gene Expr. Patterns 12 213–218Google Scholar
  49. Choo KHA 1997 The Centromere (Oxford: Published by Oxford University Press)Google Scholar
  50. Chuang LSH, Ian H-I, Koh T-W, Ng H, Xu G and Li BFL 1997 Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science. 277 1996–2000PubMedCrossRefGoogle Scholar
  51. Clowney EJ, LeGros MA, Mosley CP, Clowney FG, Markenskoff-Papadimitriou EC, Myllys M et al. 2012 Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151 724–37Google Scholar
  52. Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, et al. 2002 Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111 22–36Google Scholar
  53. Crouse HV 1960 The controlling element in sex chromosome behavior in Sciara. Genetics 45 1429Google Scholar
  54. Crouse HV 1977 X heterochromatin subdivision and cytogenetic analysis in Sciara coprophila (Diptera, Sciaridae). Chromosoma 63 39–55Google Scholar
  55. Crouse HV 1979 X heterochromatin subdivision and cytogenetic analysis in Sciara coprophila (Diptera, Sciaridae). Chromosoma 74 219–239Google Scholar
  56. Crouse H, Gerbi SA, Liang CM, Magnus L and Mercer IM 1977 Localization of ribosomal DNA within the proximal X heterochromatin of Sciara coprophila (Diptera, Sciaridae). Chromosoma 64 305–318Google Scholar
  57. Csink AK and Henikoff S 1996 Genetic modification of heterochromatic association and nuclear organization in Drosophila Proc Natl Acad Sci USA 93 6659–6664Google Scholar
  58. Davis TL, Yang GJ, McCarrey JR and Bartolomei MS 2000 The H19 methylation imprint is erased and re‐established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet. 9 2885–2894PubMedCrossRefGoogle Scholar
  59. De La Fuente R, Baumann C and Viveiros MM 2015 ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo. Development 142 1806–1817Google Scholar
  60. de Saint Phalle B and Sullivan W 1996 Incomplete sister chromatid separation is the mechanism of programmed chromosome elimination during early Sciara coprophila embryogenesis. Development 122 3775–3784Google Scholar
  61. Dinant C and Luijsterburg MS 2009 The emerging role of HP1 in the DNA damage response. Mol. Cell. Biol. 29 6335–6340PubMedPubMedCentralCrossRefGoogle Scholar
  62. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. 2012 Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485 376–380Google Scholar
  63. Drané P, Ouararhni K, Depaux A, Shuaib M and Hamiche A 2010 The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3. 3. Genes Dev. 24 1253–1265PubMedPubMedCentralCrossRefGoogle Scholar
  64. Eastman EM, Goodman RM, Erlanger BF and Miller OJ 1980 5-Methylcytosine in the DNA of the polytene chromosomes of the dipteraSciara coprophila, Drosophila melanogaster andD. persimilis. Chromosoma 79 225–239Google Scholar
  65. Elgin SCR and Reuter G 2013 Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 5 a017780PubMedPubMedCentralCrossRefGoogle Scholar
  66. Elsässer SJ, Noh K-M, Diaz N, Allis CD and Banaszynski LA 2015 Histone H3. 3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522 240–244Google Scholar
  67. Epstein H, James TC and Singh PB 1992 Cloning and expression of Drosophila HP1 homologs from a mealybug, Planococcus citri. J. Cell Sci. 101 463–474PubMedGoogle Scholar
  68. Escribá MC and Goday C 2013 Histone H3 phosphorylation and elimination of paternal X chromosomes at early cleavages in sciarid flies. J. Cell Sci. 126 3214–3222PubMedCrossRefGoogle Scholar
  69. Eustermann S, Yang J-C, Law MJ, Amos R, Chapman LM, Jelinska C, et al. 2011 Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18 777–782PubMedCrossRefGoogle Scholar
  70. Ferguson-Smith AC 2011 Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12 565–575PubMedCrossRefGoogle Scholar
  71. Festenstein R, Pagakis SN, Hiragami K, Lyon D, Verreault A, Sekkali B and Kioussis D 2003 Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299 719–721Google Scholar
  72. Field LM, Lyko F, Mandrioli M and Prantera G 2004 DNA methylation in insects. Insect Mol. Biol. 13 109–115PubMedCrossRefGoogle Scholar
  73. Francastel C, Magis W and Groudine M 2001 Nuclear relocation of a transactivator subunit precedes target gene activation. Proc. Natl. Acad. Sci. 98 12120–12125PubMedPubMedCentralCrossRefGoogle Scholar
  74. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang X-P, Neilson EG and Rauscher FJ 1996 KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10 2067–2078PubMedCrossRefGoogle Scholar
  75. Frietze S, O'Geen H, Blahnik KR, Jin VX and Farnham PJ 2010 ZNF274 recruits the histone methyltransferase SETDB1 to the 3′ ends of ZNF genes. PLoS One 5 e15082Google Scholar
  76. Fritsch L, Robin P, Mathieu JRR, Souidi M, Hinaux H, Rougeulle C, et al. 2010 A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol. Cell. 37 46–56PubMedCrossRefGoogle Scholar
  77. Fuks F, Hurd PJ, Deplus R and Kouzarides T 2003 The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31 2305–2312PubMedPubMedCentralCrossRefGoogle Scholar
  78. Fukuda A, Tomikawa J, Miura T, Hata K, Nakabayashi K, Eggan K, et al. 2014 The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nat. Commun. 5 5464Google Scholar
  79. Funaki S, Nakamura T, Nakatani T, Umehara H, Nakashima H and Nakano T 2014 Inhibition of maintenance DNA methylation by Stella. Biochem. Biophys. Res. Commun. 453 455–460PubMedCrossRefGoogle Scholar
  80. Gagnon-Kugler T, Langlois F, Stefanovsky V, Lessard F and Moss T 2009 Loss of human ribosomal gene CpG methylation enhances cryptic RNA polymerase II transcription and disrupts ribosomal RNA processing. Mol. Cell. 35 414–425PubMedCrossRefGoogle Scholar
  81. García-Cao M, O'Sullivan R, Peter AHFM, Jenuwein T and Blasco MA 2004 Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36 94–99PubMedCrossRefGoogle Scholar
  82. Gasser R, Koller T and Sogo JM 1996 The stability of nucleosomes at the replication fork. J. Mol. Biol. 258 224–239PubMedCrossRefGoogle Scholar
  83. Gaunt SJ and Singh PB 1990 Homeogene expression patterns and chromosomal imprinting. Trends Genet. 6 208–212PubMedGoogle Scholar
  84. Gerbi SA 1986 Unusual chromosome movements in sciarid flies; in Germ Line—Soma Differentiation (Springer) pp 71–104Google Scholar
  85. Gerbi SA 2007 Helen Crouse (1914–2006): imprinting and chromosome behavior. Genetics 175 1–6Google Scholar
  86. Giri S, Aggarwal V, Pontis J, Shen Z, Chakraborty A, Khan A, et al. 2015 The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin. Elife 4 e06496Google Scholar
  87. Goday C and Ruiz MF 2002 Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J. Cell Sci. 115 4765–4775PubMedCrossRefGoogle Scholar
  88. Goldberg AD, Banaszynski LA, Noh K-M, Lewis PW, Elsaesser SJ, Stadler S, et al. 2010 Distinct factors control histone variant H3. 3 localization at specific genomic regions. Cell. 140 678–691PubMedPubMedCentralCrossRefGoogle Scholar
  89. Gonzalo S, García-Cao M, Fraga MF, Schotta G, Peters AHFM, Cotter SE, et al. 2005 Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat. Cell Biol. 7 420–428PubMedCrossRefGoogle Scholar
  90. Greciano PG and Goday C 2006 Methylation of histone H3 at Lys4 differs between paternal and maternal chromosomes in Sciara ocellaris germline development. J. Cell Sci. 119 4667–4677PubMedCrossRefGoogle Scholar
  91. Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, et al. 2010 KRAB–zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet. 6 e1000869PubMedPubMedCentralCrossRefGoogle Scholar
  92. Guenatri M, Bailly D, Maison C and Almouzni G 2004 Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166 493–505PubMedPubMedCentralCrossRefGoogle Scholar
  93. Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez‐Verdun D, Hottiger MO, et al. 2010 The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J. 29 2135–2146PubMedPubMedCentralCrossRefGoogle Scholar
  94. Guibert S, Forné T and Weber M 2012 Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res. 22 633–641PubMedPubMedCentralCrossRefGoogle Scholar
  95. Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. 2014 The DNA methylation landscape of human early embryos. Nature. 511 606–610PubMedCrossRefGoogle Scholar
  96. Hackett JA and Surani MA 2013 DNA methylation dynamics during the mammalian life cycle. Philos. Trans. R. Soc. B. 368 20110328CrossRefGoogle Scholar
  97. Hanna CW and Kelsey G 2014 The specification of imprints in mammals. Heredity. 113 176–183PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hediger F and Gasser SM 2006 Heterochromatin protein 1: don’t judge the book by its cover! Curr. Opin. Genet. Dev. 16 143–150PubMedCrossRefGoogle Scholar
  99. Heitz E 1928 Das heterochromatin der moose. I Jahrb wiss Bot 69 762–818Google Scholar
  100. Henckel A, Nakabayashi K, Sanz LA, Feil R, Hata K and Arnaud P 2009 Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum. Mol. Genet. 18 3375–3383PubMedCrossRefGoogle Scholar
  101. Hendrich B and Bird A 1998 Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18 6538–6547PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hiragami-Hamada K, Soeroes S, Nikolov M, Wilkins B, Kreuz S, Chen C, et al. 2016 Dynamic and flexible H3K9me3 bridging via HP1 [beta] dimerization establishes a plastic state of condensed chromatin. Nat. Commun. 7 11310Google Scholar
  103. Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R and Sasaki H 2008 Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 22 1607–1616PubMedPubMedCentralCrossRefGoogle Scholar
  104. Hiura H, Obata Y, Komiyama J, Shirai M and Kono T 2006 Oocyte growth‐dependent progression of maternal imprinting in mice. Genes Cells 11 353–361Google Scholar
  105. Horsley D, Hutchings A, Butcher GW and Singh PB 1996 M32, a murine homologue of Drosophila heterochromatin protein 1 (HP1), localises to euchromatin within interphase nuclei and is largely excluded from constitutive heterochromatin. Cytogenet. Genome Res. 73 308–311CrossRefGoogle Scholar
  106. Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, et al. 2001 Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104 829–838Google Scholar
  107. Hughes-Schrader S 1948 Cytology of coccids (Coccoidea-Homoptera). Adv. Genet. 2 127–203Google Scholar
  108. International Human Genome Sequencing C 2004 Finishing the euchromatic sequence of the human genome. Nature. 431 931–945CrossRefGoogle Scholar
  109. Ishiuchi T., Enriquez-Gasca R, Mizutani E, Bošković A, Ziegler-Birling C, Rodriguez-Terrones D, et al. 2015 Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22 662-671Google Scholar
  110. Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, et al. 2007 PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell. 28 823–837PubMedPubMedCentralCrossRefGoogle Scholar
  111. Iyengar S and Farnham PJ 2011 KAP1 protein: an enigmatic master regulator of the genome. J. Biol. Chem. 286 26267–26276PubMedPubMedCentralCrossRefGoogle Scholar
  112. Jaenisch R and Bird A 2003 Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 245–254PubMedCrossRefGoogle Scholar
  113. Johnson A and O'Donnell M 2005 Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74 283–315PubMedCrossRefGoogle Scholar
  114. Jones DO, Cowell IG and Singh PB 2000 Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays 22 124–137Google Scholar
  115. Jurkowska RZ, Rajavelu A, Anspach N, Urbanke C, Jankevicius G, Ragozin S, et al. 2011 Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules heterochromatic localization and role of Dnmt3L. J. Biol. Chem. 286 24200–24207PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, et al. 2007 Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet. 16 2272–2280PubMedCrossRefGoogle Scholar
  117. Kelsey G and Feil R 2013 New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos. Trans. R. Soc. B. 368 20110336CrossRefGoogle Scholar
  118. Khosla S, Kantheti P, Brahmachari V and Chandra HS 1996 A male-specific nuclease-resistant chromatin fraction in the mealybug Planococcus lilacinus. Chromosoma 104 386–392Google Scholar
  119. Khosla S, Augustus M and Brahmachari V 1999 Sex-specific organisation of middle repetitive DNA sequences in the mealybug Planococcus lilacinus. Nucleic Acids Res. 27 3745–3751PubMedPubMedCentralCrossRefGoogle Scholar
  120. Kigami D, Minami N, Takayama H and Imai H 2003 MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol. Reprod. 68 651–654PubMedCrossRefGoogle Scholar
  121. Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E, et al. 1999 Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10 345–355Google Scholar
  122. Ko MSH 2016 Zygotic genome activation revisited: looking through the expression and function of Zscan4. Curr. Top. Dev. Biol. 120 103-124Google Scholar
  123. Kobayashi H, Suda C, Abe T, Kohara Y, Ikemura T and Sasaki H 2006 Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs): paternally methylated DMRs contain less CpGs than maternally methylated DMRs. Cytogenet. Genome Res. 113 130–137PubMedCrossRefGoogle Scholar
  124. Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, et al. 2012 Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 8 e1002440PubMedPubMedCentralCrossRefGoogle Scholar
  125. Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, et al. 2004 Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J. Cell Sci. 117 2491–2501PubMedCrossRefGoogle Scholar
  126. Kourmouli N, Sun Y-M, van der Sar S, Singh PB and Brown JP 2005 Epigenetic regulation of mammalian pericentric heterochromatin in vivo by HP1. Biochem. Biophys. Res. Commun. 337 901–907PubMedCrossRefGoogle Scholar
  127. Krouwels IM, Wiesmeijer K, Abraham TE, Molenaa C, Verwoerd NP, Tanke HJ and Dirks RW 2005 A glue for heterochromatin maintenance stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J. Cell Biol. 170 537–549PubMedPubMedCentralCrossRefGoogle Scholar
  128. Kurihara Y, Kawamura Y, Uchijima Y, Amamo T, Kobayashi H, Asano T and Kurihara H 2008 Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev. Biol. 313 335–346PubMedCrossRefGoogle Scholar
  129. Kwon SH and Workman JL 2008 The heterochromatin protein 1 (HP1) family: put away a bias toward HP1. Mol. Cell. 26 217–227Google Scholar
  130. Le Dily F, Baù D, Pohl A, Vicent GP, Serra F, Soronellas D, et al. 2014 Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28 2151–2162PubMedPubMedCentralCrossRefGoogle Scholar
  131. Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R and Chambon P 1996 A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 15 6701PubMedPubMedCentralGoogle Scholar
  132. Lechner MS, Begg GE, Speicher DW and Rauscher FJ 2000 Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain–KAP-1 corepressor interaction is essential. Mol. Cell. Biol. 20 6449–6465PubMedPubMedCentralCrossRefGoogle Scholar
  133. Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, et al. 2003 Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13 1192–1200PubMedCrossRefGoogle Scholar
  134. Leonhardt H, Page AW, Weier H-U and Bestor TH 1992 A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71 865–873Google Scholar
  135. Leseva M, Knowles BB Messerschmidt DM and Solter D 2015 Erase–Maintain–Establish: Natural Reprogramming of the Mammalian Epigenome; in Cold Spring Harb. Symp. Quant. Biol. (Cold Spring Harbor Laboratory Press) 80 155–163Google Scholar
  136. Leung D, Du T, Wagner U, Xie W, Lee AY, Goyal P, et al. 2014 Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1. Proc. Natl. Acad. Sci. 111 6690–6695PubMedPubMedCentralCrossRefGoogle Scholar
  137. Lewis EB 1950 The phenomenon of position effect. Adv. Genet. 3 73–115PubMedGoogle Scholar
  138. Li E and Zhang Y 2014 DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6 a019133PubMedPubMedCentralCrossRefGoogle Scholar
  139. Li E, Beard C and Jaenisch R 1993 Role for DNA methylation in genomic imprinting. Nature 366 362–365Google Scholar
  140. Li X, Ito M, Zhou F, Youngson N, Zu X, Leder P and Ferguson-Smith AC 2008 A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell. 15 547–557PubMedPubMedCentralCrossRefGoogle Scholar
  141. Liu Y, Toh H, Sasaki H, Zhang X and Cheng X 2012 An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev. 26 2374–2379PubMedPubMedCentralCrossRefGoogle Scholar
  142. Liu X, Gao Q, Li P, Zha Q, Zhang J, Li J, et al. 2013 UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat. Commun. 4 1563PubMedCrossRefGoogle Scholar
  143. Loppin B, Bonnefoy E, Anselme C, Laurençon A, Karr TL and Couble P 2005 The histone H3. 3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437 1386–1390Google Scholar
  144. Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A, et al. 2009 The HP1α–CAF1–SetDB1‐containing complex provides H3K9me1 for Suv39‐mediated K9me3 in pericentric heterochromatin. EMBO Rep. 10 769–775PubMedPubMedCentralCrossRefGoogle Scholar
  145. Lubit BW, Duc PT, Miller OJ and Erlanger BF 1976 Localization of 5-methylcytosine in human metaphase chromosomes by immunoelectron microscopy. Cell 9 503–509Google Scholar
  146. Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P and Costanzo P 2013 KRAB-zinc finger proteins: a repressor family displaying multiple biological functions. Curr. Genomics 14 268–278Google Scholar
  147. Lyon MF 1961 Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 90 372–3Google Scholar
  148. Lyon MF and Rastan S 1984 Parental source of chromosome imprinting and its relevance for X chromosome inactivation. Differentiation 26 63–67Google Scholar
  149. Lyons DB, Magklara A, Goh T, Sampath SC, Schaefer A, Schotta G, et al. 2014 Heterochromatin-mediated gene silencing facilitates the diversification of olfactory neurons. Cell Rep. 9 884–92Google Scholar
  150. Macfarlan TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K, Wang J, et al. 2011 Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25 594–607PubMedPubMedCentralCrossRefGoogle Scholar
  151. Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W, Markenscoff-Papadimitriou E, et al. 2011 An epigenetic signature for monoallelic olfactory receptor expression. Cell 145 555–570Google Scholar
  152. Maison C and Almouzni G 2004 HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol. 5 296–305PubMedCrossRefGoogle Scholar
  153. Maksakova IA, Thompson PJ, Goyal P, Jones SJM, Singh PB, Karimi MM and Lorincz MC 2013 Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenetics Chromatin 6 1CrossRefGoogle Scholar
  154. Manukyan M and Singh PB 2012 Epigenetic rejuvenation. Genes Cells. 17 337–343PubMedPubMedCentralCrossRefGoogle Scholar
  155. Manukyan M and Singh PB 2014 Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states. Sci. Rep. 4 Google Scholar
  156. Marión RM and Blasco MA 2010 Telomere rejuvenation during nuclear reprogramming. Curr. Opin. Genet. Dev. 20 190–196PubMedCrossRefGoogle Scholar
  157. Martin C, Beaujean N, Brochard V, Audouard C, Zink D and Debey P 2006 Genome restructuring in mouse embryos during reprogramming and early development. Dev. Biol. 292 317–332PubMedCrossRefGoogle Scholar
  158. Mateescu B, Bourachot B, Rachez C, Ogryzko V and Muchardt 2008 Regulation of an inducible promoter by an HP1β–HP1γ switch. EMBO Rep. 9 267–272PubMedPubMedCentralCrossRefGoogle Scholar
  159. Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A and Zhang Y 2014 Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell. 159 884–895PubMedPubMedCentralCrossRefGoogle Scholar
  160. Matsuda E, Agata Y, Sugai M, Katakai T, Gonda H and Shimizu A 2001 Targeting of Krüppel-associated Box-containing Zinc Finger Proteins to Centromeric Heterochromatin IMPLICATION FOR THE GENE SILENCING MECHANISMS. J. Biol. Chem. 276 14222–14229PubMedCrossRefGoogle Scholar
  161. Mayer W, Niveleau A, Walter J, Fundele R and Haaf T 2000a Embryogenesis: demethylation of the zygotic paternal genome. Nature 403 501–502Google Scholar
  162. Mayer W, Smith A, Fundele R and Haaf T 2000b Spatial separation of parental genomes in preimplantation mouse embryos. J. Cell Biol. 148 629–634Google Scholar
  163. McClintock B 1951 Chromosome organization and genic expression; in Cold Spring Harb. Symp. Quant. Biol. (Cold Spring Harbor Laboratory Press) pp 13–47Google Scholar
  164. McEwen KR and Ferguson-Smith AC 2010 Distinguishing epigenetic marks of developmental and imprinting regulation. Epigenetics Chromatin 3 1Google Scholar
  165. McGrath J and Solter D 1984 Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37 179–183Google Scholar
  166. McStay B 2016 Nucleolar organizer regions: genomic ‘dark matter’requiring illumination. Genes Dev. 30 1598–1610PubMedCrossRefGoogle Scholar
  167. Meehan RR, Kao CF and Pennings S 2003 HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J. 22 3164–3174PubMedPubMedCentralCrossRefGoogle Scholar
  168. Meglicki M, Teperek-Tkacz M and Borsuk E 2012 Appearance and heterochromatin localization of HP1α in early mouse embryos depends on cytoplasmic clock and H3S10 phosphorylation. Cell Cycle 11 2189–2205Google Scholar
  169. Melcher M, Schmid M, Aagaard L, Selenko P, Laible G and Jenuwein T 2000 Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol. Cell. Biol. 20 3728–3741PubMedPubMedCentralCrossRefGoogle Scholar
  170. Mendel G 1866 Versuche uber Pflanzen-Hybriden. Verh. Naturforsch. Ver. Brunn 4 3-47 English translation in 1901. J. R. Hortic. Soc. 26 1–32Google Scholar
  171. Mermoud JE, Rowbotham SP and Varga-Weisz PD 2011 Keeping chromatin quiet: how nucleosome remodeling restores heterochromatin after replication. Cell Cycle 10 4017–4025Google Scholar
  172. Messerschmidt DM, Knowles BB and Solter D 2014 DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28 812–828PubMedPubMedCentralCrossRefGoogle Scholar
  173. Metz CW 1938 Chromosome behavior, inheritance and sex determination in Sciara. Am. Nat. 72 485–520CrossRefGoogle Scholar
  174. Minc E, Allory Y, Worman HJ, Courvalin J-C and Buendia B 1999 Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108 220–234Google Scholar
  175. Mohan KN and Chandra HS 2005 Isolation and analysis of sequences showing sex-specific cytosine methylation in the mealybug Planococcus lilacinus. Mol. Genet. Genomics 274 557–568Google Scholar
  176. Mombaerts P 2001 The human repertoire of odorant receptor genes and pseudogenes. Ann. Rev. Genomics Hum. Genet. 2 493–510Google Scholar
  177. Moosmann P, Georgiev O, Le Douarin B, Bourquin J-P and Schaffner W 1996 Transcriptional repression by RING finger protein TIF1β that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 24 4859–4867PubMedPubMedCentralCrossRefGoogle Scholar
  178. Muchardt C, Guillemé M, Seeler JS, Trouche D, Dejean A and Yaniv M 2002 Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep. 3 975–981PubMedPubMedCentralCrossRefGoogle Scholar
  179. Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, et al. 2008 Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133 627–639Google Scholar
  180. Murzina N, Verreault A, Laue E and Stillman B 1999 Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell. 4 529–540PubMedCrossRefGoogle Scholar
  181. Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, et al. 2007 PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9 64–71PubMedCrossRefGoogle Scholar
  182. Nakamura T, Liu Y-J, Nakashima H, Umehara H, Inoue K, Matoba S, et al. 2012 PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486 415–419Google Scholar
  183. Nelson‐Rees WA 1960 A study of sex predetermination in the mealy bug Planococcus citri (Risso). J. Exp. Zool. 144 111–137PubMedCrossRefGoogle Scholar
  184. Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P and Losson R 2001 Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell. 7 729–739PubMedCrossRefGoogle Scholar
  185. Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, et al. 2002 Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416 103–107Google Scholar
  186. Nozawa R-S, Nagao K, Masuda H-T, Iwasaki O, Hirota T, Nozaki N, et al. 2010 Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation. Nat. Cell Biol. 12 719–727PubMedCrossRefGoogle Scholar
  187. Obata Y and Kono T 2002 Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J. Biol. Chem. 277 5285–5289PubMedCrossRefGoogle Scholar
  188. O'Geen H, Squazzo SL, Iyengar S, Blahnik K, Rinn JL, Chang HY, et al. 2007 Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PLoS Genet. 3 e89PubMedPubMedCentralCrossRefGoogle Scholar
  189. Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, et al. 2012 Chromatin-modifying enzymes as modulators of reprogramming. Nature 483 598–602Google Scholar
  190. Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, et al. 2000 Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10 475–478PubMedCrossRefGoogle Scholar
  191. Pak DTS, Pflumm M, Chesnokov I, Huang DW, Kellum R, Marr J, et al. 1997 Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell. 91 311–323PubMedCrossRefGoogle Scholar
  192. Pannetier M, Julien E, Schotta G, Tardat M, Sardet C, Jenuwein T and Feil R 2008 PR‐SET7 and SUV4‐20H regulate H4 lysine‐20 methylation at imprinting control regions in the mouse. EMBO Rep. 9 998–1005PubMedPubMedCentralCrossRefGoogle Scholar
  193. Papait R, Pistore C, Negri D, Pecoraro D, Cantarini L and Bonapace IM 2007 Np95 is implicated in pericentromeric heterochromatin replication and in major satellite silencing. Mol. Biol. Cell. 18 1098–1106PubMedPubMedCentralCrossRefGoogle Scholar
  194. Papait R, Pistore C, Grazini U, Babbio F, Cogliati S, Pecoraro D, et al. 2008 The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin. Mol. Biol. Cell. 19 3554–3563PubMedPubMedCentralCrossRefGoogle Scholar
  195. Paro R 1990 Imprinting a determined state into the chromatin of Drosophila. Trends Genet. 6 416–421PubMedCrossRefGoogle Scholar
  196. Parry AJ and Narita M 2016 Old cells, new tricks: chromatin structure in senescence. Mamm. Genome 1–12Google Scholar
  197. Peng H, Begg GE, Schultz DC, Friedman JR, Jensen DE, Speicher DW and Rauscher FJ 2000 Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J. Mol. Biol. 295 1139–1162PubMedCrossRefGoogle Scholar
  198. Peters AHFM, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, et al. 2001 Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107 323–337Google Scholar
  199. Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. 2010 Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 463 1101–1105PubMedPubMedCentralCrossRefGoogle Scholar
  200. Prasanth SG, Shen Z, Prasanth KV and Stillman B 2010 Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc. Natl. Acad. Sci. 107 15093–15098PubMedPubMedCentralCrossRefGoogle Scholar
  201. Probst AV, Santos F, Reik W, Almouzni G and Dean W 2007 Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 116 403–415Google Scholar
  202. Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P and Almouzni G 2010 A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 19 625–638Google Scholar
  203. Proudhon C, Duffié R, Ajjan S, Cowley M, Iranzo J, Carbajosa G, et al. 2012 Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol. Cell 47 909–920Google Scholar
  204. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, et al. 2011 In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell. 44 361–372PubMedPubMedCentralCrossRefGoogle Scholar
  205. Rapkin LM, Ahmed K, Dulev S, Li R, Kimura H, Ishov AM and Bazett-Jones DP 2015 The histone chaperone DAXX maintains the structural organization of heterochromatin domains. Epigenetics Chromatin 8 1Google Scholar
  206. Ratnam S, Mertineit C, Ding F, Howell CY, Clarke HJ, Bestor TH, et al. 2002 Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and pre-implantation development. Dev. Biol. 245 304–314PubMedCrossRefGoogle Scholar
  207. Rebollo R, Miceli-Royer K, Zhang Y, Farivar S, Gagnier L and Mager DL 2012 Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol. 13 1CrossRefGoogle Scholar
  208. Regha K, Sloane MA, Huang R, Pauler FM, Warczok KE, Melikant B, et al. 2007 Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol. Cell 27 353–366Google Scholar
  209. Reik W and Surani MA 2015 Germline and pluripotent stem cells. Cold Spring Harb. Perspect. Biol. 7 a019422PubMedCrossRefGoogle Scholar
  210. Rens W, Wallduck MS, Lovell FL, Ferguson-Smith MA and Ferguson-Smith AC 2010 Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation. Proc. Natl. Acad. Sci. 107 17657–17662PubMedPubMedCentralCrossRefGoogle Scholar
  211. Riclet R, Chendeb M, Vonesch J-L, Koczan D, Thiesen H-J, Losson R and Cammas F 2009 Disruption of the interaction between transcriptional intermediary factor 1β and heterochromatin protein 1 leads to a switch from DNA hyper-to hypomethylation and H3K9 to H3K27 trimethylation on the MEST promoter correlating with gene reactivation. Mol. Biol. Cell. 20 296–305PubMedPubMedCentralCrossRefGoogle Scholar
  212. Rottach A, Frauer C, Pichler G, Bonapace IM, Spada F and Leonhardt H 2010 The multi-domain protein Np95 connects DNA methylation and histone modification. Nucleic Acids Res. 38 1796–1804PubMedCrossRefGoogle Scholar
  213. Rowbotham SP, Barki L, Neves-Costa A, Santos F, Dean W, Hawkes N, et al. 2011 Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell. 42 285–296PubMedCrossRefGoogle Scholar
  214. Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ and Rauscher FJ 1999 KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box–zinc finger proteins in heterochromatin-mediated gene silencing. Mol. Cell. Biol. 19 4366–4378PubMedPubMedCentralCrossRefGoogle Scholar
  215. Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ and Torres-Padilla M-E 2010 Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3. 3. Nat. Cell Biol. 12 853–862PubMedPubMedCentralCrossRefGoogle Scholar
  216. Santoro R, Li J and Grummt I 2002 The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat. Genet. 32 393–396PubMedCrossRefGoogle Scholar
  217. Santos F and Dean W 2004 Epigenetic reprogramming during early development in mammals. Reproduction 127 643–651Google Scholar
  218. Santos F, Peters AH, Otte AP, Reik W and Dean W 2005 Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol. 280 225–236PubMedCrossRefGoogle Scholar
  219. Sasaki H and Matsui Y 2008 Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat. Rev. Genet. 9 129–140PubMedCrossRefGoogle Scholar
  220. Saunders WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, et al. 1993 Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J. Cell Sci. 104 573–582PubMedGoogle Scholar
  221. Schmiedeberg L, Weisshart K, Diekmann S, Meyer zu Hoerste G and Hemmerich P 2004 High-and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol. Biol. Cell. 15 2819–2833PubMedPubMedCentralCrossRefGoogle Scholar
  222. Schmitz K-M, Mayer C, Postepska A and Grummt I 2010 Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24 2264–2269PubMedPubMedCentralCrossRefGoogle Scholar
  223. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, et al. 2004 A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18 1251–1262PubMedPubMedCentralCrossRefGoogle Scholar
  224. Schultz RM and Worrad DM 1995 Role of chromatin structure in zygotic gene activation in the mammalian embryo, in Semin. Cell Biol. (Elsevier) pp 201–208Google Scholar
  225. Schultz DC, Friedman JR and Rauscher FJ 2001 Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes Dev. 15 428–443PubMedPubMedCentralCrossRefGoogle Scholar
  226. Schultz DC, Ayyanathan K, Negorev D, Maul GG and Rauscher FJ 2002 SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16 919–932PubMedPubMedCentralCrossRefGoogle Scholar
  227. Schulz R, Proudhon C, Bestor TH, Woodfine K, Lin C-S, Lin S-P, et al. 2010 The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet. 6 e1001214PubMedPubMedCentralCrossRefGoogle Scholar
  228. Schwaiger M, Kohler H, Oakeley EJ, Stadler MB and Schübeler D 2010 Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 20 771–780PubMedPubMedCentralCrossRefGoogle Scholar
  229. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. 2012 The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell. 48 849–862PubMedPubMedCentralCrossRefGoogle Scholar
  230. Sharif J, Muto M, Takebayashi S-i, Suetake I, Iwamatsu, A, Endo TA, et al. 2007 The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450 908–912Google Scholar
  231. Shibahara K-I and Stillman B 1999 Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96 575–585Google Scholar
  232. Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, et al. 2013 Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 9 e1003439PubMedPubMedCentralCrossRefGoogle Scholar
  233. Simon I, Tenzen T, Reubinoff BE, Hillman D, McCarry JR and Cedar H 1993 Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401 929–932Google Scholar
  234. Singh PB 1994 Molecular mechanisms of cellular determination: their relation to chromatin structure and parental imprinting. J. Cell Sci. 107 2653–2668PubMedGoogle Scholar
  235. Singh PB 2010 HP1 proteins—What is the essential interaction? Russ. J. Genet. 46 1257–1262CrossRefGoogle Scholar
  236. Singh PB and Zacouto F 2010 Nuclear reprogramming and epigenetic rejuvenation. J. Biosci. 35 315–319PubMedCrossRefGoogle Scholar
  237. Singh PB, Miller JR, Pearce J, Kothary R, Burton RD, Paro R, et al. 1991 A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res. 19 789–794PubMedPubMedCentralCrossRefGoogle Scholar
  238. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW and Cortez D 2011 Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev. 25 1320–1327PubMedPubMedCentralCrossRefGoogle Scholar
  239. Slatis HM 1955 Position effects at the brown locus in Drosophila melanogaster. Genetics 40 5Google Scholar
  240. Smallwood A, Estève P-O, Pradhan S and Carey M 2007 Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 21 1169–1178PubMedPubMedCentralCrossRefGoogle Scholar
  241. Smallwood SA, S-i T, Krueger F, Ruf N, Carli N, Segonds-Pichon A, et al. 2011 Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43 811–814PubMedPubMedCentralCrossRefGoogle Scholar
  242. Smallwood A, Hon GC, Jin F, Henry RE, Espinosa JM and Ren B 2012 CBX3 regulates efficient RNA processing genome-wide. Genome Res. 22 1426–1436PubMedPubMedCentralCrossRefGoogle Scholar
  243. Smith S and Stillman B 1989 Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58 15–25Google Scholar
  244. Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, et al. 2014 DNA methylation dynamics of the human preimplantation embryo. Nature. 511 611–615PubMedPubMedCentralCrossRefGoogle Scholar
  245. Smith ZD, Sindhu C and Meissner A 2016 Molecular features of cellular reprogramming and development. Nat. Rev. Mol. Cell Biol. 17 139–154PubMedCrossRefGoogle Scholar
  246. Smothers JF and Henikoff S 2000 The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol. 10 27–30PubMedCrossRefGoogle Scholar
  247. Sobel RE, Cook RG, Perry CA, Annunziato AT and Allis CD 1995 Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. 92 1237–1241PubMedPubMedCentralCrossRefGoogle Scholar
  248. Spofford JB 1959 Parental control of position-effect variegation: I. Parental heterochromatin and expression of the white locus in compound-X Drosophila melanogaster. Proc. Natl. Acad. Sci. 45 1003–1007PubMedPubMedCentralCrossRefGoogle Scholar
  249. Spofford JB 1961 Parental control of position-effect variegation. II. Effect of sex of parent contributing white-mottled rearrangement in Drosophila melanogaster. Genetics 46 1151Google Scholar
  250. Spofford JB 1976 Position-effect variegation in Drosophila; in The genetics and biology of Drosophila Vol. 1 (pp 955–1018)Google Scholar
  251. Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, et al. 2013 Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat. Cell Biol. 15 872–882PubMedPubMedCentralCrossRefGoogle Scholar
  252. Sripathy SP, Stevens J and Schultz DC 2006 The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol. Cell. Biol. 26 8623–8638PubMedPubMedCentralCrossRefGoogle Scholar
  253. Strogantsev R, Krueger F, Yamazawa K, Shi H, Gould P, Goldman-Roberts M, et al. 2015 Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression. Genome Biol. 16 1CrossRefGoogle Scholar
  254. Stults DM, Killen MW, Pierce HH and Pierce AJ 2008 Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 18 13–18PubMedPubMedCentralCrossRefGoogle Scholar
  255. Surani MA, Barton SC and Norris ML 1984 Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 308 548–550PubMedCrossRefGoogle Scholar
  256. Tagami H, Ray-Gallet D, Almouzni G and Nakatani Y 2004 Histone H3. 1 and H3. 3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116 51–61Google Scholar
  257. Takagi N and Sasaki M 1975 Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256 640–642Google Scholar
  258. Takikawa S, Wang X, Ray C, Vakulenko M, Bell FT and Li X 2013 Human and mouse ZFP57 proteins are functionally interchangeable in maintaining genomic imprinting at multiple imprinted regions in mouse ES cells. Epigenetics 8 1268–1279Google Scholar
  259. Tardat M, Albert M, Kunzmann R, Liu Z, Kaustov L, Thierry R, et al. 2015 Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol. Cell. 58 157–171PubMedCrossRefGoogle Scholar
  260. Tarkowski AK 1959 Experiments on the development of isolated blastomeres of mouse eggs. Nature 184 1286–1287Google Scholar
  261. Thiru A, Nietlispach D, Mott HR, Okuwaki M, Lyon D, Nielsen PR, et al. 2004 Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J. 23 489–499PubMedPubMedCentralCrossRefGoogle Scholar
  262. Tomizawa S, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G et al. 2011 Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138 811–820Google Scholar
  263. Tomizawa S-I, Nowacka-Woszuk J and Kelsey G 2013 DNA methylation establishment during oocyte growth: mechanisms and significance. Int. J. Dev. Biol. 56 867–875CrossRefGoogle Scholar
  264. Torres-Padilla M-E, Bannister AJ, Hurd PJ, Kouzarides T and Zernicka-Goetz M 2003 Dynamic distribution of the replacement histone variant H3. 3 in the mouse oocyte and preimplantation embryos. Int. J. Dev. Biol. 50 455–461Google Scholar
  265. Valle-García D, Qadeer ZA, McHugh DS, Ghiraldini FG, Chowdhury AH, Hasson D, et al. 2016 ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment. Epigenetics 1–17Google Scholar
  266. van der Heijden GW, Dieker JW, Derijck AAHA, Muller S, Berden JHM, Braat DDM, et al. 2005 Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech. Dev. 122 1008–1022PubMedCrossRefGoogle Scholar
  267. Vogel MJ, Guele L, de Wit E, Hupkes DP, Lodén M, Talhout W, et al. 2006 Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res. 16 1493–1504PubMedPubMedCentralCrossRefGoogle Scholar
  268. Voon HPJ and Wong LH 2016 New players in heterochromatin silencing: histone variant H3. 3 and the ATRX/DAXX chaperone. Nucleic Acids Res. 44 1496–1501PubMedPubMedCentralCrossRefGoogle Scholar
  269. Voon HPJ, Hughes JR, Rode C, Inti A, Jenuwein T, Feil R, et al. 2015 ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Rep. 11 405–418PubMedPubMedCentralCrossRefGoogle Scholar
  270. Wang G, Ma A, C-m C, Horsley D, Brown NR, Cowell IG and Singh PB 2000 Conservation of heterochromatin protein 1 function. Mol. Cell. Biol. 20 6970–6983PubMedPubMedCentralCrossRefGoogle Scholar
  271. Wei LH, Erlanger BE, Eastman EM, Miller OJ and Goodman R 1981 Inverse relationship between transcriptional activity and 5-methylcytosine content of DNA in polytene chromosomes of Sciara coprophila. Exp. Cell Res. 135 411–415PubMedCrossRefGoogle Scholar
  272. Weiler KS and Wakimoto BT 1995 Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29 577–605PubMedCrossRefGoogle Scholar
  273. White MJD 1954 Animal Cytology and Evolution 2nd ed. (London: Cambridge Univ. Press)Google Scholar
  274. Williamson CM, Blake A, Thomas S, Beechey CV, Hancock J, Cattanach BM and Peters J MRC Harwell; Oxfordshire: 2013. World Wide Web Site-Mouse Imprinting Data and References-
  275. Wolf SF, Dintzis S, Toniol D, Persico G, Lunnen KD, Axelman J and Migeon BR 1984 Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3′ CpG clusters: implications for X chromosome dosage compensation. Nucleic Acids Res. 12 9333–9348PubMedPubMedCentralCrossRefGoogle Scholar
  276. Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, et al. 2010 ATRX interacts with H3. 3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 20 351–360PubMedPubMedCentralCrossRefGoogle Scholar
  277. Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, et al. 2011 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2 241PubMedCrossRefGoogle Scholar
  278. Wreggett KA, Hill F, James PS, Hutchings A, Butcher GW and Singh PB 1994 A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenet. Genome Res. 66 99–103CrossRefGoogle Scholar
  279. Wuite GJL, Smith SB, Young M, Keller D and Bustamante C 2000 Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404 103–106Google Scholar
  280. Xu M, Long C, Chen X, Huang C, Chen S and Zhu B 2010 Partitioning of histone H3-H4 tetramers during DNA replication–dependent chromatin assembly. Science 328 94–98Google Scholar
  281. Yang BX, Farran CAEL, Guo HC, Yu T, Fang HT, Wang HF, et al. 2015 Systematic identification of factors for provirus silencing in embryonic stem cells. Cell. 163 230–245PubMedPubMedCentralCrossRefGoogle Scholar
  282. Yearim A, Gelfman S, Shayevitch R, Melcer S, Glaich O, Mallm J-P, et al. 2015 HP1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep. 10 1122–1134PubMedCrossRefGoogle Scholar
  283. Yunis JJ and Yasmineh WG 1971 Heterochromatin, satellite DNA, and cell function. Science 174 1200–1209Google Scholar
  284. Zhang T, Termanis A, Özkan B, Bao XX, Culley J, de Lima AF, et al. 2016 G9a/GLP complex maintains imprinted DNA methylation in embryonic stem cells. Cell Rep. 15 77–85PubMedPubMedCentralCrossRefGoogle Scholar
  285. Zhang X, Zhang X and Firestein S 2007 Comparative genomics of odorant and pheromone receptor genes in rodents. Genomics 89 441–450Google Scholar
  286. Zuo X, Sheng J, Lau H-T, McDonald CM, Andrade M, Cullen DE, et al. 2012 Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J. Biol. Chem. 287 2107–2118PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  1. 1.Fächerverbund Anatomie, Institut für Zell- und Neuro-biologieCharite - UniversitätsmedizinBerlinGermany
  2. 2.Department of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations