Journal of Biosciences

, Volume 39, Issue 4, pp 711–716 | Cite as

DNA barcoding of a new record of epi-endophytic green algae Ulvella leptochaete (Ulvellaceae, Chlorophyta) in India

  • Felix BastEmail author
  • Satej Bhushan
  • Aijaz Ahmad John


Epi-endophytic green algae comprise one of the most diverse and phylogenetically primitive groups of green algae and are considered to be ubiquitous in the world’s oceans; however, no reports of these algae exist from India. Here we report the serendipitous discovery of Ulvella growing on intertidal green algae Cladophora glomerata and benthic red algae Laurencia obtusa collected from India. DNA barcodes at nuclear ribosomal DNA Internal Transcriber Spacer (nrDNA ITS) 1 and 2 regions for Indian isolates from the west and east coasts have been generated for the first time. Based on morphology and DNA barcoding, isolates were identified as Ulvella leptochaete. Phylogenetic reconstruction of concatenated dataset using Maximum Likelihood method differentiated Indian isolates from other accessions of this alga available in Genbank, albeit with low bootstrap support. Monophyly of Ulvella leptochaete was obvious in both of our phylogenetic analyses. With this first report of epi-endophytic algae from Indian territorial waters, the dire need to catalogue its cryptic diversity is highlighted and avenues of future research are discussed.


Acrochaete DNA barcoding endophyte epiphyte ITS marine biodiversity microalgae 



We are grateful to the Vice chancellor, Central University of Punjab, for the support that he extended to materialize this study. This work is supported with Department of Science and Technology, India, INSPIRE Faculty Award (IFA-LSPA-02) awarded to FB.


  1. Allen HL 1971 Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr. 98–127Google Scholar
  2. Bown P, Plumb J, Sánchez-Baracaldo P, Hayes PK and Brodie J 2003 Sequence heterogeneity of green (Chlorophyta) endophytic algae associated with a population of Chondrus crispus (Gigartinaceae, Rhodophyta). Eur. J. Phycol. 38 153–163CrossRefGoogle Scholar
  3. Dauby P and Poulicek M 1995 Methods for removing epiphytes from seagrasses: SEM observations on treated leaves. Aqua. Bot. 52 217–228CrossRefGoogle Scholar
  4. Del Campo E, García‐Reina G and Correa JA 1998 Degradative disease in Ulva rigida (Chlorophyceae) associated with Acrochaete geniculata (Chlorophyceae). J. Phycol. 34 160–166CrossRefGoogle Scholar
  5. Deng Y, Tang X, Ding L and Lian S 2011 A new record from China of epiphytic marine algae, Acrochaete leptochaete (Chaetophoraceae, Chlorophyta) with its primary experimental biology. Chinese J. Ocean. Limnol. 29 350–355CrossRefGoogle Scholar
  6. Deng Y, Tang X, Huang B, Teng L and Ding L 2012 Molecular identification and culture observation on Acrochaete leptochaete (Chaetophoraceae, Chlorophyta) from China. Chinese J. Ocean. Limnol 30 476CrossRefGoogle Scholar
  7. Egan S, Thomas T, Holmström C and Kjelleberg S 2000 Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environ. Microbiol. 2 343–347PubMedCrossRefGoogle Scholar
  8. Fama P, Olsen J, Stam W and Procaccini G 2000 High levels of intra-and inter-individual polymorphism in the rDNA ITS1 of Caulerpa racemosa (Chlorophyta). Eur. J. Phycol. 35 349–356CrossRefGoogle Scholar
  9. Felsenstein J 1985 Confidence limits on phylogenies: an approach using the bootstrap. Evolution 783–791 Google Scholar
  10. Fisher MM, Wilcox LW and Graham LE 1998 Molecular characterization of epiphytic bacterial communities on charophycean green algae. Appl. Environ. Microbiol. 64 4384–4389PubMedCentralPubMedGoogle Scholar
  11. Guindon S and Gascuel O 2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 696–704PubMedCrossRefGoogle Scholar
  12. Kitamura H, Kitahara S and Koh H 1993 The induction of larval settlement and metamorphosis of two sea urchins, Pseudocentrotus depressus and Anthocidaris crassispina, by free fatty acids extracted from the coralline red alga Corallina pilulifera. Marine Biol. 115 387–392CrossRefGoogle Scholar
  13. Kitting CL, Fry B and Morgan MD 1984 Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia 62 145–149CrossRefGoogle Scholar
  14. Nielsen R, Petersen G, Seberg O, Daugbjerg N, O'Kelly CJ and Wysor B 2013 Revision of the genus Ulvella (Ulvellaceae, Ulvophyceae) based on morphology and tufA gene sequences of species in culture, with Acrochaete and Pringsheimiella placed in synonymy. Phycologia 52 37–56CrossRefGoogle Scholar
  15. O'Kelly CJ, Bellows WK and Wysor B 2004 Phylogenetic position of Bolbocoleon piliferum (ulvophyceae, chlorophyta): evidence from reproduction, zoospore and gamete ultrastructure, and small subunit rRNA gene sequences. J. Phycol. 40 209–222CrossRefGoogle Scholar
  16. Rinkel BE, Hayes P, Gueidan C and Brodie J 2012 A molecular phylogeny of Acrochaete and other endophytic green algae (Ulvales, Chlorophyta). J. Phycol. 48 1020–1027CrossRefGoogle Scholar
  17. Ronquist F and Huelsenbeck JP 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 1572–1574PubMedCrossRefGoogle Scholar
  18. Shacklock P and Doyle R 1983 Control of epiphytes in seaweed cultures using grazers. Aquaculture 31 141–151CrossRefGoogle Scholar
  19. Tamura K and Nei M 1993 Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10 512–526PubMedGoogle Scholar
  20. White TJ, Bruns T, Lee S and Taylor J 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, vol 18. PCR protocols: a guide to methods and applications (Waltham, Massachusetts: Academic Press)Google Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  1. 1.Centre for BiosciencesCentral University of PunjabBathindaIndia

Personalised recommendations