Journal of Biosciences

, Volume 39, Issue 4, pp 595–603 | Cite as

Insights into brain development and disease from neurogenetic analyses in Drosophila melanogaster

  • Heinrich Reichert


Groundbreaking work by Obaid Siddiqi has contributed to the powerful genetic toolkit that is now available for studying the nervous system of Drosophila. Studies carried out in this powerful neurogenetic model system during the last decade now provide insight into the molecular mechanisms that operate in neural stem cells during normal brain development and during abnormal brain tumorigenesis. These studies also provide strong support for the notion that conserved molecular genetic programs act in brain development and disease in insects and mammals including humans.


Asymmetric division lineage neuroblast SWI/SNF complex transit amplifying cell tumour 



The author acknowledges the support of the Swiss NSF.


  1. Acampora D, Avantaggiato V, Tuorto F, Barone P, Reichert H, Finkelstein R and Simeone A 1998 Murine Otx1 and Drosophila otd genes share conserved genetic functions required in invertebrate and vertebrate brain development. Dev. 125 1691–1702Google Scholar
  2. Acampora D, Boyl PP, Signore M, Martinez-Barbera JP, Ilengo C, Puelles E, Annino A, Reichert H, Corte G and Simeone A 2001 OTD/OTX2 functional equivalence depends on 5' and 3' UTR-mediated control of Otx2 mRNA for nucleo-cytoplasmic export and epiblast-restricted translation. Dev. 128 4801–4813Google Scholar
  3. Bayraktar OA, Boone JQ, Drummond ML and Doe CQ 2010 Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural. Dev. 5 26PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bayraktar OA and Doe CQ 2013 Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498 449–455PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bello BC, Izergina N, Caussinus E and Reichert H 2008 Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural. Dev. 3 5 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Berger C, Harzer H, Burkard TR, Steinmann J, van der Horst S, Laurenson AS, Novatchkova M, Reichert H, et al. 2012 FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for Klumpfuss in self-renewal. Cell Rep. 2 407–418PubMedCentralPubMedCrossRefGoogle Scholar
  7. Boone JQ and Doe CQ 2008 Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev. Neurobiol. 68 1185–1195PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G and Knoblich JA 2008 The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell 14 535–546PubMedCentralPubMedCrossRefGoogle Scholar
  9. Brand AH and Livesey FJ 2011 Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron 70 719–729PubMedCrossRefGoogle Scholar
  10. Brochtrup A and Hummel T 2011 Olfactory map formation in the Drosophila brain: genetic specificity and neuronal variability. Curr. Opin. Neurobiol. 21 85–92PubMedCrossRefGoogle Scholar
  11. Cajal S and Sanchez D 1915 Contribución al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Inv. Biol. 13 1–68Google Scholar
  12. Caussinus E and Gonzalez C 2005 Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat. Genet. 37 1125–1129PubMedCrossRefGoogle Scholar
  13. Darwin C 1871 The descent of man, and selection in relation to sex (John Murray: London)CrossRefGoogle Scholar
  14. Das A, Chiang A, Davla S, Priya R, Reichert H, Vijayraghavan K and Rodrigues V 2011 Identification and analysis of a glutamatergic local interneuron lineage in the adult Drosophila olfactory system. Neural. Syst. Circuits 1 4PubMedCentralPubMedCrossRefGoogle Scholar
  15. Das A, Reichert H and Rodrigues V 2010 Notch regulates the generation of diverse cell types from the lateral lineage of Drosophila antennal lobe. J. Neurogenet. 24 42–53PubMedCrossRefGoogle Scholar
  16. Doe CQ 2008 Neural stem cells: balancing self-renewal with differentiation. Dev. 135 1575–1587CrossRefGoogle Scholar
  17. Egger B, Chell JM and Brand A 2008 Insights into neural stem cell biology from flies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363 39–56PubMedCentralPubMedCrossRefGoogle Scholar
  18. Eroglu E, Burkhard TR, Jiang Y, Saini N, Homem CCF, Reichert H and Knoblich JA 2014 SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells. Cell 156 1259–1273PubMedCrossRefGoogle Scholar
  19. Fietz SA and Huttner WB 2011 Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr. Opin. Neurobiol. 21 23–35PubMedCrossRefGoogle Scholar
  20. Gonzalez C 2007 Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat. Rev. Genet. 8 462–472PubMedCrossRefGoogle Scholar
  21. Gonzalez C 2013 Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat. Rev. Cancer. 13 172–183Google Scholar
  22. Hartenstein V and Wodarz A 2013 Initial neurogenesis in Drosophila. Wiley. Interdiscip. Rev. Dev. Biol. 2 701–721PubMedCrossRefGoogle Scholar
  23. Homem CC and Knoblich JA 2012 Drosophila neuroblasts: a model for stem cell biology. Dev. 139 4297–4310CrossRefGoogle Scholar
  24. Ito K and Hotta Y 1992 Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev. Biol. 149 134–148PubMedCrossRefGoogle Scholar
  25. Ito K and Awasaki T 2008 Clonal unit architecture of the adult fly brain. Adv. Exp. Med. Biol. 628 137–158PubMedCrossRefGoogle Scholar
  26. Ito M, Masuda N, Shinomiya K, Endo K and Ito K 2013 Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Curr. Biol. 23 644–655PubMedCrossRefGoogle Scholar
  27. Izergina N, Balmer J, Bello B and Reichert H 2009 Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Dev. 4 44PubMedCentralPubMedCrossRefGoogle Scholar
  28. Januschke J and Gonzalez C 2008 Drosophila asymmetric division, polarity and cancer. Oncogene 27 6994–7002PubMedCrossRefGoogle Scholar
  29. Jiang Y and Reichert H 2012 Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain. Neural Dev. 7 3PubMedCentralPubMedCrossRefGoogle Scholar
  30. Karcavich RE 2005 Generating neuronal diversity in the Drosophila central nervous system: a view from the ganglion mother cells. Dev. Dyn. 232 609–616PubMedCrossRefGoogle Scholar
  31. Karcavich R and Doe CQ 2005 Drosophila neuroblast 7–3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J. Comp. Neurol. 481 240–251PubMedCrossRefGoogle Scholar
  32. Knoblich JA 2008 Mechanisms of asymmetric stem cell division. Cell 132 583–597PubMedCrossRefGoogle Scholar
  33. Knoblich JA 2010 Asymmetric cell division: recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell. Biol. 11 849–860PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kreso A and Dick JE 2014 Evolution of the Cancer Stem Cell Model. Cell Stem Cell 14 275–291. PubMedCrossRefGoogle Scholar
  35. Kumar A, Bello B and Reichert H 2009 Lineage-specific cell death in postembryonic brain development of Drosophila. Dev. 136 3433–3442CrossRefGoogle Scholar
  36. Lee T, Lee A and Luo L 1999 Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Dev. 126 4065–4076Google Scholar
  37. Lee T and Luo L 1999 Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22 451–461PubMedCrossRefGoogle Scholar
  38. Leuzinger S, Hirth F, Gerlich D, Acampora D, Simeone A, Gehring WJ, Finkelstein R, Furukubo-Tokunaga K, et al. 1998 Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Dev. 125 1703–1710Google Scholar
  39. Li X, Chen Z and Desplan C 2013 Temporal patterning of neural progenitors in Drosophila. Curr. Top. Dev. Biol. 105 69–96PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lichtneckert R and Reichert H 2005 Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity 94 465–477PubMedCrossRefGoogle Scholar
  41. Lichtneckert R and Reichert H 2008 Anteroposterior regionalization of the brain: genetic and comparative aspects. Adv. Exp. Med. Biol. 628 32–41PubMedCrossRefGoogle Scholar
  42. Lin S, Lai SL, Yu HH, Chihara T, Luo L and Lee T 2010 Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain. Dev. 137 43–51CrossRefGoogle Scholar
  43. Lui JH, Hansen DV and Kriegstein AR 2011 Development and evolution of the human neocortex. Cell 146 18–36PubMedCentralPubMedCrossRefGoogle Scholar
  44. Maurange C 2012 Temporl specification of neural stem cells: insights from Drosophila neuroblasts. Curr. Top. Dev. Biol. 98 199–228PubMedCrossRefGoogle Scholar
  45. Maurange, Cheng L and Gould AP 2008 Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133 891–902PubMedCrossRefGoogle Scholar
  46. Neumüller RA and Knoblich JA 2009 Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 23 2675–2699PubMedCentralPubMedCrossRefGoogle Scholar
  47. Neumüller RA, Richter C, Fischer A, Novatchkova M, Neumüller KG and Knoblich JA 2011 Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 8 580–593PubMedCentralPubMedCrossRefGoogle Scholar
  48. Reichert H 2009 Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development. Biol. Lett. 5 112–116PubMedCentralPubMedCrossRefGoogle Scholar
  49. Reichert H 2011 Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development. Results Probl. Cell. Differ. 53 529-546PubMedCrossRefGoogle Scholar
  50. Reichert H and Simeone A 2001 Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356 1533–1544PubMedCentralPubMedCrossRefGoogle Scholar
  51. Reya T, Morrison SJ, Clarke MF and Weissman I 2001 Stem cells, cancer, and cancer stem cells. Nature 414 105–111PubMedCrossRefGoogle Scholar
  52. Riebli N, Viktorin G and Reichert H 2013 Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila. Neural Dev. 8 6PubMedCentralPubMedCrossRefGoogle Scholar
  53. Rodrigues V and Hummel T 2008 Development of the Drosophila olfactory system. Adv. Exp. Med. Biol. 628 82–101 PubMedCrossRefGoogle Scholar
  54. Skeath JB and Thor S 2003 Genetic control of Drosophila nerve cord development. Curr. Opin. Neurobiol. 13 8–15PubMedCrossRefGoogle Scholar
  55. Sousa-Nunes R, Cheng LY and Gould AP 2010 Regulating neural proliferation in the Drosophila CNS. Curr. Opin. Neurobiol. 20 50–57PubMedCrossRefGoogle Scholar
  56. Technau GM, Berger C and Urbach R 2006 Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev. Dyn. 235 861–869PubMedCrossRefGoogle Scholar
  57. Truman JW, Moats W, Altman J, Marin EC and Williams DW 2010 Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster. Dev. 137 53–61CrossRefGoogle Scholar
  58. Urbach R and Technau GM 2004 Neuroblast formation and patterning during early brain development in Drosophila. Bioessays 26 739–751PubMedCrossRefGoogle Scholar
  59. Viktorin G, Riebli N, Popkova A, Giangrande A and Reichert H 2011 Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev. Biol. 356 553–565PubMedCrossRefGoogle Scholar
  60. Viktorin, Riebli N and Reichert H 2013 A multipotent transit-amplifying neuroblast lineage in the central brain gives rise to optic lobe glial cells in Drosophila. Dev. Biol. 379 182–194PubMedCrossRefGoogle Scholar
  61. Wang YC, Yang JS, Johnston R, Ren Q, Lee YJ, Luan H, Brody T, Odenwald WF and Lee T 2014 Drosophila intermediate neural progenitors produce lineage-dependent related series of diverse neurons. Dev. 141 253–258CrossRefGoogle Scholar
  62. Weng M and Lee CY 2011 Keeping neural progenitor cells on a short leash during Drosophila neurogenesis. Curr. Opin. Neurobiol. 21 36–42PubMedCentralPubMedCrossRefGoogle Scholar
  63. Wilson RI 2013 Early olfactory processing in Drosophila: mechanisms and principles. Annu. Rev. Neurosci. 36 217–241PubMedCentralPubMedCrossRefGoogle Scholar
  64. Wong DC, Lovick JK, Ngo KT, Borisuthirattana W, Omoto JJ and Hartenstein V 2013 Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Dev. Biol. 384 258–289PubMedCrossRefGoogle Scholar
  65. Yang JS, Awasaki T, Yu HH, He Y, Ding P, Kao JC and Lee T 2013 Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex. J. Comp. Neurol. 521 2645–2662PubMedCentralPubMedCrossRefGoogle Scholar
  66. Yu HH, Awasaki T, Schroeder MD, Long F, Yang JS, He Y, Ding P, et al. 2013 Clonal development and organization of the adult Drosophila central brain. Curr. Biol. 23 633–643PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  1. 1.Biozentrum, University of BaselBaselSwitzerland

Personalised recommendations