Advertisement

Journal of Biosciences

, Volume 39, Issue 3, pp 401–413 | Cite as

Differential expression of speckled POZ protein, SPOP: Putative regulation by miR-145

  • Chiu-Jung Huang
  • Hsing-Yu Chen
  • Wan-Yi Lin
  • Kong Bung ChooEmail author
Article

Abstract

The speckle POZ protein, SPOP, is an adaptor of the Cul3-based ubiquitination process, and has been implicated in the carcinogenesis process. Despite recent elucidation of biological functions, regulation of SPOP gene expression has not been reported. In this study, the mRNA levels of the mouse SPOP (mSPOP) gene were first shown to vary noticeably in different tissues. However, the SPOP protein was detected in high abundance only in Purkinje cells of the cerebellum and seminiferous tubule of the testis, echoing previous reports of involvement of ubiquitination in neuron cells and in spermatogenesis. In other mouse tissues and human cancer cell lines analysed, only low SPOP protein levels were detected. The 3′-untranslated regions of both the mSPOP and human SPOP transcripts harbor a conserved putative miR-145 binding site (BS). In some tissues and cell lines, miR-145 and SPOP protein levels were in an inverse relationship suggesting miR-145 regulation. Luciferase assays of deletion and point mutation constructs of the miR-145 BS, and miR-145 induction by serum starvation that resulted in reduced endogenous SPOP levels provided further evidence that miR-145 is likely involved in post-transcriptional regulation of SPOP expression in selected tissues, and possibly with the participation of other miRNA species.

Keywords

Cerebellar Purkinje cells spermatogenesis SPOP miR-145 TD/POZ protein family testicular seminiferous tubule 

Abbreviations

BS

binding site

MacroH2A1

macrohistone H2A1

PDX-1

pancreatic duodenal homeobox 1

PCIF1

PDX-1 C-terminus-interacting factor 1

PIPKIIβ

phosphatidylinositol phosphate kinase IIβ

Siah1A

seven-in-absentia homolog 1A

SPOP

speckled POZ protein

SRC-3

steroid receptor co-activator-3

TNF

tumour necrosis factor

TRAF

TNF receptor-associated factor

Ube2i

ubiquitin-conjugating enzyme 2i

Notes

Acknowledgements

This work was supported in part by a grant (NSC-101-2313-B-034-003) from the National Science Council (Taiwan) to CJH, and by a University Tunku Abdul Rahman intramural grant 6200/C39 to KBC.

References

  1. Baarends WM, van der Laan R and Grootegoed JA 2000 Specific aspects of the ubiquitin system in spermatogenesis. J. Endocrinol. Invest. 23 597–604PubMedCrossRefGoogle Scholar
  2. Bao J, Zhang J, Zheng H, Xu C and Yan W 2010 UBQLN1 interacts with SPEM1 and participates in spermiogenesis. Mol. Cell. Endocrinol. 327 89–97PubMedCentralPubMedCrossRefGoogle Scholar
  3. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, et al. 2011 The genomic complexity of primary human prostate cancer. Nature 470 214–220PubMedCentralPubMedCrossRefGoogle Scholar
  4. Betel D, Wilson M, Gabow A, Marks DS and Sander C 2008 The microRNA.org resource: targets and expression. Nucleic Acids Res. 36 D149–153PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bunce MW, Boronenkov IV and Anderson RA 2008 Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J. Biol. Chem. 283 8678–8686PubMedCrossRefGoogle Scholar
  6. Byun B, Tak H and Joe CO 2007 BTB/POZ domain of speckle-type POZ protein (SPOP) confers proapoptotic function in HeLa cells. Biofactors 31 165–169PubMedCrossRefGoogle Scholar
  7. Choo KB, Hsu MC, Tsai YH, Lin WY and Huang CJ 2011 Nuclear factor kappa B and tumor necrosis factor-alpha modulation of transcription of the mouse testis- and pre-implantation development-specific Rnf33/Trim60 gene. FEBS J. 278 837–850PubMedCrossRefGoogle Scholar
  8. Choo KB, Chuang TJ, Lin WY, Chang CM, Tsai YH and Huang CJ 2010 Evolutionary expansion of SPOP and associated TD/POZ gene family: impact of evolutionary route on gene expression pattern. Gene 460 39–47PubMedCrossRefGoogle Scholar
  9. Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD and Stoffers DA 2010 Pcif1 modulates Pdx1 protein stability and pancreatic beta cell function and survival in mice. J. Clin. Invest. 120 3713–3721PubMedCentralPubMedCrossRefGoogle Scholar
  10. Friedman RC, Farh KK, Burge CB and Bartel DP 2009 Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19 92–105PubMedCentralPubMedCrossRefGoogle Scholar
  11. Haghikia A, et al. 2011 Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: a key role for ubiquitin-conjugating enzymes. Eur. Heart J. 32 1287–1297PubMedCrossRefGoogle Scholar
  12. Hernandez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, et al. 2005 Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc. Natl. Acad. Sci. USA 102 7635–7640PubMedCentralPubMedCrossRefGoogle Scholar
  13. Huang CJ, Wu SC and Choo KB 2005a Transcriptional modulation of the pre-implantation embryo-specific Rnf35 gene by the Y-box protein NF-Y/CBF. Biochem. J. 387 367–375CrossRefGoogle Scholar
  14. Huang CJ, Huang CC and Chang CC 2012 Association of the testis-specific TRIM/RBCC protein RNF33/TRIM60 with the cytoplasmic motor proteins KIF3A and KIF3B. Mol. Cell. Biochem. 360 121–131PubMedCrossRefGoogle Scholar
  15. Huang CJ, Chang JG, Wu SC and Choo KB 2005b Negative transcriptional modulation and silencing of the bi-exonic Rnf35 gene in the preimplantation embryo. Binding of the CCAAT-displacement protein/Cux to the untranslated exon 1 sequence. J. Biol. Chem. 280 30681–30688CrossRefGoogle Scholar
  16. Huang CJ, Lin WY, Chang CM and Choo KB 2009 Transcription of the rat testis-specific Rtdpoz-T1 and -T2 retrogenes during embryo development: co-transcription and frequent exonisation of transposable element sequences. BMC Mol. Biol. 10 74.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Huang CJ, Chen CY, Chen HH, Tsai SF and Choo KB 2004 TDPOZ, a family of bipartite animal and plant proteins that contain the TRAF (TD) and POZ/BTB domains. Gene 324 117–127PubMedCrossRefGoogle Scholar
  18. Huang Q and Figueiredo-Pereira ME 2010 Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis 15 1292–1311PubMedCentralPubMedCrossRefGoogle Scholar
  19. Jennewein C, von Knethen A, Schmid T and Brune B 2010 MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J. Biol. Chem. 285 11846–11853PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kan Z, et al. 2010 Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466 869–873PubMedCrossRefGoogle Scholar
  21. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, et al. 2005 Combinatorial microRNA target predictions. Nat. Genet. 37 495–500.PubMedCrossRefGoogle Scholar
  22. Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH, Baek SH, Chiba T, et al. 2006 BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. J. Biol. Chem. 281 12664–12672PubMedCrossRefGoogle Scholar
  23. Laan R, Baarends WM, Wassenaar E, Roest HP, Hoeijmakers JH and Grootegoed JA 2005 Expression and possible functions of DNA lesion bypass proteins in spermatogenesis. Int. J. Androl. 28 1–5PubMedCrossRefGoogle Scholar
  24. Leppert U, Henke W, Huang X, Muller JM, Dubiel W. 2011 Post-transcriptional fine-tuning of COP9 signalosome subunit biosynthesis is regulated by the c-Myc/Lin28B/let-7 pathway. J. Mol. Biol. 409 710–721PubMedCrossRefGoogle Scholar
  25. Li C, Ao J, Fu J, Lee DF, Xu J, Lonard D and O'Malley BW 2011 Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene 30 4350–4364PubMedCentralPubMedCrossRefGoogle Scholar
  26. Liao Y, Du X and Lonnerdal B 2010 miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells. J. Nutr. 140 1552–1556PubMedCrossRefGoogle Scholar
  27. Liu A, Desai BM and Stoffers DA 2004 Identification of PCIF1, a POZ domain protein that inhibits PDX-1 (MODY4) transcriptional activity. Mol. Cell. Biol. 24 4372–4383PubMedCentralPubMedCrossRefGoogle Scholar
  28. Liu A, Oliver-Krasinski J and Stoffers DA 2006 Two conserved domains in PCIF1 mediate interaction with pancreatic transcription factor PDX-1. FEBS Lett. 580 6701–6706PubMedCrossRefGoogle Scholar
  29. Liu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C, Hua S, Nègre N, et al. 2009 Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 323 1218–1222PubMedCentralPubMedCrossRefGoogle Scholar
  30. Liu Z, Miao D, Xia Q, Hermo L and Wing SS 2007 Regulated expression of the ubiquitin protein ligase, E3(Histone)/LASU1/Mule/ARF-BP1/HUWE1, during spermatogenesis. Dev. Dyn. 236 2889–2898PubMedCrossRefGoogle Scholar
  31. Lu C, Huang X, Zhang X, Roensch K, Cao Q, Nakayama KI, Blazar BR, Zeng Y, et al. 2011 miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117 4293–4303PubMedCentralPubMedCrossRefGoogle Scholar
  32. Matsuda N and Tanaka K 2010 Does impairment of the ubiquitin-proteasome system or the autophagy-lysosome pathway predispose individuals to neurodegenerative disorders such as Parkinson's disease? J. Alzheimers Dis. 19 1–9PubMedGoogle Scholar
  33. Moriyoshi K, Iijima K, Fujii H, Ito H, Cho Y, Nakanishi S. 2004. Seven in absentia homolog 1A mediates ubiquitination and degradation of group 1 metabotropic glutamate receptors. Proc Natl Acad Sci USA 101 8614–8619PubMedCentralPubMedCrossRefGoogle Scholar
  34. Nishito Y, Hasegawa M, Inohara N and Nunez G 2006 MEX is a testis-specific E3 ubiquitin ligase that promotes death receptor-induced apoptosis. Biochem. J. 396 411–417PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sachdeva M and Mo YY 2010 miR-145-mediated suppression of cell growth, invasion and metastasis. Am. J. Transl. Res. 2 170–180PubMedCentralPubMedGoogle Scholar
  36. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, et al. 2009 p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl. Acad. Sci. USA 106 3207–3212PubMedCentralPubMedCrossRefGoogle Scholar
  37. Sun X, Fu X, Han W, Zhao Y and Liu H 2010 Can controlled cellular reprogramming be achieved using microRNAs? Ageing Res. Rev. 9 475–483PubMedCrossRefGoogle Scholar
  38. Sutovsky P, Turner RM, Hameed S and Sutovsky M 2003 Differential ubiquitination of stallion sperm proteins: possible implications for infertility and reproductive seasonality. Biol. Reprod. 68 688–698PubMedCrossRefGoogle Scholar
  39. Takahashi I, Kameoka Y and Hashimoto K 2002 MacroH2A1.2 binds the nuclear protein Spop. Biochim. Biophys. Acta. 1591 63–68PubMedCrossRefGoogle Scholar
  40. Wang M, et al. 2010 Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ. 17 488–498PubMedCentralPubMedCrossRefGoogle Scholar
  41. Wright A, Reiley WW, Chang M, Jin W, Lee AJ, Zhang M and Sun SC 2007 Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev. Cell 13 705–716PubMedCrossRefGoogle Scholar
  42. Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, Lai L and Jiang BH 2012 MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 40 761–774PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  • Chiu-Jung Huang
    • 1
    • 2
  • Hsing-Yu Chen
    • 3
  • Wan-Yi Lin
    • 1
    • 2
  • Kong Bung Choo
    • 4
    • 5
    Email author
  1. 1.Department of Animal ScienceChinese Culture UniversityTaipeiTaiwan
  2. 2.Graduate Institute of BiotechnologyChinese Culture UniversityTaipeiTaiwan
  3. 3.Graduate Program, Department of Biotechnology and Laboratory Science in MedicineNational Yang Ming UniversityTaipeiTaiwan
  4. 4.Department of Preclinical Sciences, Faculty of Medicine and Health SciencesUniversiti Tunku Abdul RahmanSg LongMalaysia
  5. 5.Centre for Stem Cell ResearchUniversiti Tunku Abdul RahmanSg LongMalaysia

Personalised recommendations