Journal of Biosciences

, Volume 39, Issue 1, pp 33–41 | Cite as

Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth

  • Bhawna Saxena
  • Mayavan Subramaniyan
  • Karan Malhotra
  • Neel Sarovar Bhavesh
  • Shobha Devi Potlakayala
  • Shashi KumarEmail author
Brief communication


Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.


Antimalarial drug artemisinin gene pyramiding isopentenyl-diphosphate/isopentenyl pyrophosphate (IPP) metabolic flux mevalonate (MEV) pathway plastome transplastomics 



We thank the Department of Biotechnology (DBT) and Department of Science and Technology, India, for providing financial support to SK (grants BT/HRD/35/02/09/2008, BT/PR13028/PID/06/473/2009 and SR/SO/BB-37/2010 respectively). We also like to thank DBT for the grant to NSB for the 500 MHz NMR spectrometers at the ICGEB, New Delhi. Our sincere thanks to Dr Ranjan Nanda (ICGEB, New Delhi) for his help with the analysis of ESI-mass spectrometry data.

Supplementary material

12038_2013_9402_MOESM1_ESM.pdf (69 kb)
ESM 1 (PDF 69.2 kb)


  1. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD and Keasling JD 2009 Optimization of the mevalonate-based isoprenoid biosynthetic pathway in E. coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng. 11 13–19Google Scholar
  2. Avery MA, Chong WKM and Jennings-White C 1992 Stereoselective total synthesis of (+)-Artemisinin, the antimalarial constituent of Artemisia annua L. J. Med. Chem. 114 974–979Google Scholar
  3. Boyhan D and Daniell H 2011 Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol. J. 9 585–598PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chen DH, Ye HC and Li GF 2000 Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci. 155 179–185Google Scholar
  5. Daniell H, Chebolu S, Kumar S, Singleton M and Falconer R 2005 Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23 1779–1783PubMedCrossRefGoogle Scholar
  6. Davis TME, Karunajeewa HA and Kenneth F 2005 Artemisinin-based combination therapies for uncomplicated malaria. Ilett. Med. J. Aust. 182 181–185Google Scholar
  7. Dufourmantel N, Tissot G, Goutorbe F, Garçon F, Muhr C, Jansens S, Pelissier B, Peltier G and Dubald M 2005 Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol. Biol. 58 659–668Google Scholar
  8. Eckardt NA 2006 Genomic hopscotch: Gene transfer from plastid to nucleus. Plant Cell 18 2865–2867PubMedCentralCrossRefGoogle Scholar
  9. Enserink M 2005 Infectious diseases: Source of new hope against malaria is in short supply. Science 307 33PubMedCrossRefGoogle Scholar
  10. Farhi M, Marhevka E, Ben-Ari J, Dimantov AA, Liang Z, Zeevi V, Edelbaum O, Spitzer-Rimon B, et al. 2011 Generation of the potent anti-malarial drug artemisinin in tobacco. Nat. Biotech. 29 1072–1074Google Scholar
  11. Fuentes I, Karcher D and Bock R 2012 Experimental reconstruction of the functional transfer of intron-containing plastid genes to the nucleus. Curr. Biol. 22 763–771PubMedCrossRefGoogle Scholar
  12. Gupta MM, Jain DC, Mathur AK, Singh AK, Verma RK and Kumar S 1996 Isolation of a high artemisinic acid containing plant of Artemisia annua. Planta Med. 62 280–281PubMedCrossRefGoogle Scholar
  13. Gry M, Rimini R, Stromberg S, Asplund A, Ponten F, Uhlen M and Nilsson P 2009 Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10 365PubMedCentralPubMedCrossRefGoogle Scholar
  14. Harris EH, Burkhart BD, Gillham WW and Boynton JE 1989 Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 123 281–292PubMedCentralPubMedGoogle Scholar
  15. Kumar S, Dhingra A and Daniell H 2004 Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol. 136 2843–2854PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kumar S and Daniell H 2004 Engineering the chloroplast genome for hyperexpression of human therapeutic proteins and vaccine antigens. Methods Mol. Biol. 267 365–384Google Scholar
  17. Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood, DF, McMahan CM, Cornish K, Keasling JK, Daniell H and Whalen MC 2012 Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab. Eng. 14 19–28PubMedCrossRefGoogle Scholar
  18. Levesque F and Seeberger PH 2012 Continuous flow synthesis of the antimalarial drug artemisinin. Angew. Chem. Int. Ed. 51 1706–1709Google Scholar
  19. Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU 2003 Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): Significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep. 9 891–899Google Scholar
  20. Lu Y, Rijzaani H, Karcher D, Ruf S and Bock R 2013 Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl. Acad. Sci. USA 110 E623–E632PubMedCentralPubMedCrossRefGoogle Scholar
  21. Martin V JJ, Pitera DJ, Withers ST, Newman JN and Keasling JD 2003 Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotech. 21 796–802Google Scholar
  22. Misra LN, Ahmad A, Thakur RS, Lotter H and Wagner H 1993 Crystal structure of artemisinic acid: A possible biogenetic precursor of antimalarial artemisinin from Artemisia annua. J Nat Prod. 56(2) 215–219Google Scholar
  23. Mutabingwa TK 2005 Artemisinin-based combination therapies (ACTs) best hope for malaria treatment but inaccessible to the needy. Acta Tropica 95 305–315PubMedCrossRefGoogle Scholar
  24. Paddon C J, Westfall P J, Pitera D J, Benjamin K, Fisher K, McPhee D, Leavell M D, Tai A, et al. 2013 High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 528–532PubMedCrossRefGoogle Scholar
  25. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, et al. 2006 Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440 940–943PubMedCrossRefGoogle Scholar
  26. Svab Z and Maliga P 1993 High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90 913–917PubMedCentralPubMedCrossRefGoogle Scholar
  27. Van Herpen TWJW, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ and Beekwilder J 2010 Nicotiana benthamiana as a Production Platform for Artemisinin Precursors. PLoS ONE 5 e14222 doi: 10.1371/journal.pone.0014222 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Vergauwe A, Cammaert R, Vandenberghe D, Genetello C, Inze´ D, Van Montagu M and Van den Eeckhout E 1996 Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. and regeneration of transgenic plants. Plant Cell Rep. 15 929–933PubMedCrossRefGoogle Scholar
  29. Vergauwe A, Van Geldre E, Inze D, Van Montagu M and Van den Eeckhout E 1998 Factors influencing Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. Plant Cell Rep. 18 105–110CrossRefGoogle Scholar
  30. Vogel C and Marcotte EM 2012 Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13 227–232Google Scholar
  31. Wallaart TE, Pras N and Quax WJ 2000a Seasonal variations of artemisinin and its biosynthetic precursors in tetraploid Artemisia annua plants compared with the diploid wild-type. Planta 66 57–62Google Scholar
  32. Wallaart TE, Pras N, Beekman AC and Quax WJ 2000b Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med. 66 57–62PubMedCrossRefGoogle Scholar
  33. White NJ 2008 Qinghaosu (Artemisinin): The price of success. Science 320 330–334PubMedCrossRefGoogle Scholar
  34. World Health Organization 2001 Antimalarial drug combination therapy: report of a WHO technical consultation. WHO/CDS/ RBM/2001/35 reiterated in 2003Google Scholar
  35. Withers ST, Gottlieb SS, Lieu B, Newman JD and Keasling JD 2007 Identification of isopentenol biosynthetic genes from Bacillus subtilis using isoprenoid precursor toxicity. Appl. Environ. Microbiol. 73 6277–6283Google Scholar
  36. World Health Organization 2010 World malaria report 2010 (WHO, Geneva)CrossRefGoogle Scholar
  37. Wu S, Schalk M, Clark A, Miles RB, Coates R and Chappell J 2006 Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 24 1441–1447PubMedCrossRefGoogle Scholar
  38. Xu XX, Zhu J, Huang D and Zhou W 1986 Total synthesis of arteannuin and deoxyarteannuin. Tetrahedron 42 819–828CrossRefGoogle Scholar
  39. Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJ, Ross AR and Covello PS 2008 The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J. Biol. Chem. 283 21501–21508Google Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  • Bhawna Saxena
    • 1
  • Mayavan Subramaniyan
    • 1
  • Karan Malhotra
    • 1
  • Neel Sarovar Bhavesh
    • 1
  • Shobha Devi Potlakayala
    • 2
  • Shashi Kumar
    • 1
    Email author
  1. 1.International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.School of Science Engineering and TechnologyPenn State HarrisburgMiddletownUSA

Personalised recommendations