Journal of Biosciences

, Volume 38, Issue 3, pp 641–649 | Cite as

Stem cell function and maintenance – ends that matter: Role of telomeres and telomerase



Stem cell research holds a promise to treat and prevent age-related degenerative changes in humans. Literature is replete with studies showing that stem cell function declines with aging, especially in highly proliferative tissues/organs. Among others, telomerase and telomere damage is one of the intrinsic physical instigators that drive age-related degenerative changes. In this review we provide brief overview of telomerase-deficient aging affects in diverse stem cells populations. Furthermore, potential disease phenotypes associated with telomerase dysregulation in a specific stem cell population is also discussed in this review. Additionally, the role of telomerase in stem cell driven cancer is also briefly touched upon.


Aging stem cells telomerase telomeres 


  1. Abdallah BM, Haack-Sorensen M, Fink T and Kassem M 2006 Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39 181–188PubMedCrossRefGoogle Scholar
  2. Abdallah BM and Kassem M 2008 Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 15 109–116PubMedCrossRefGoogle Scholar
  3. Abdallah BM and Kassem M 2009 The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: current status and future perspectives. J. Cell Physiol. 218 9–12PubMedCrossRefGoogle Scholar
  4. Armstrong L, Lako M, Lincoln J, Cairns PM and Hole N 2000 mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mech. Dev. 97 109–116PubMedCrossRefGoogle Scholar
  5. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L and DePinho RA 2000 Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406 641–645PubMedCrossRefGoogle Scholar
  6. Artegiani B and Calegari F 2012 Age-related cognitive decline: can neural stem cells help us? Aging 4 176–186PubMedGoogle Scholar
  7. Balaban RS, Nemoto S and Finkel T 2005 Mitochondria, oxidants, and aging. Cell 120 483–495PubMedCrossRefGoogle Scholar
  8. Ballas CB, Zielske SP and Gerson SL 2002 Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J. Cell Biochem. Suppl. 38 20–28PubMedCrossRefGoogle Scholar
  9. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ and Bellantuono I 2004 Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22 675–682PubMedCrossRefGoogle Scholar
  10. Bianco P, Riminucci M, Gronthos S and Robey PG 2001 Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19 180–192PubMedCrossRefGoogle Scholar
  11. Blackburn EH 1984 Telomeres: do the ends justify the means? Cell 37 7–8PubMedCrossRefGoogle Scholar
  12. Blackburn EH and Chiou SS 1981 Non-nucleosomal packaging of a tandemly repeated DNA sequence at termini of extrachromosomal DNA coding for rRNA in Tetrahymena. Proc. Natl. Acad. Sci. USA 78 2263–2267PubMedCrossRefGoogle Scholar
  13. Blackburn EH and Gall JG 1978 A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120 33–53PubMedCrossRefGoogle Scholar
  14. Blasco MA 2005 Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 6 611–622PubMedCrossRefGoogle Scholar
  15. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA and Greider CW 1997 Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91 25–34PubMedCrossRefGoogle Scholar
  16. Beausejour C 2011 Bone marrow-derived cells: the influence of aging and cellular senescence. Handbook Expe Pharmacol. 180 67–88CrossRefGoogle Scholar
  17. Campisi J 2005 Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120 513–522PubMedCrossRefGoogle Scholar
  18. Chao H and Hirschi KK 2010 Hemato-vascular origins of endothelial progenitor cells? Microvasc. Res. 79 169–173PubMedCrossRefGoogle Scholar
  19. Chen CW, Corselli M, Peault B and Huard J 2012 Human blood-vessel-derived stem cells for tissue repair and regeneration. J. Biomed. Biotechnol. 2012 597439PubMedGoogle Scholar
  20. Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE, Harley CB and Lansdorp PM 1996 Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14 239–248PubMedCrossRefGoogle Scholar
  21. Cooke HJ and Smith BA 1986 Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb. Symp. Quant. Biol. 51 Pt 1 213–219PubMedCrossRefGoogle Scholar
  22. Counter CM, Botelho FM, Wang P, Harley CB and Bacchetti S 1994 Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J. Virol. 68 3410–3414PubMedGoogle Scholar
  23. Darimont C, Avanti O, Tromvoukis Y, Vautravers-Leone P, Kurihara N, Roodman GD, Colgin LM, Tullberg-Reinert H, Pfeifer AM, Offord EA and Mace K 2002 SV40 T antigen and telomerase are required to obtain immortalized human adult bone cells without loss of the differentiated phenotype. Cell Growth Differ. 13 59–67PubMedGoogle Scholar
  24. Darimont C, Zbinden I, Avanti O, Leone-Vautravers P, Giusti V, Burckhardt P, Pfeifer AM and Mace K 2003 Reconstitution of telomerase activity combined with HPV-E7 expression allow human preadipocytes to preserve their differentiation capacity after immortalization. Cell Death Differ. 10 1025–1031PubMedCrossRefGoogle Scholar
  25. dda di FF, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von ZT, Saretzki G, Carter NP and Jackson SP 2003 A DNA damage checkpoint response in telomere-initiated senescence. Nature 426 194–198Google Scholar
  26. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I and Pereira-Smith O 1995 A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92 9363–9367PubMedCrossRefGoogle Scholar
  27. Djojosubroto MW, Choi YS, Lee HW and Rudolph KL 2003 Telomeres and telomerase in aging, regeneration and cancer. Mol. Cells 15 164–175PubMedGoogle Scholar
  28. Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, Harley CB, Villeponteau B, West MD and Giorgi JV 1996 Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 10 F17–F22PubMedCrossRefGoogle Scholar
  29. Endo T, Bryant SV and Gardiner DM 2004 A stepwise model system for limb regeneration. Dev. Biol. 270 135–145PubMedCrossRefGoogle Scholar
  30. Espejel S, Klatt P, Menissier-de MJ, Martin-Caballero J, Flores JM, Taccioli G, de MG and Blasco MA 2004 Impact of telomerase ablation on organismal viability, aging, and tumorigenesis in mice lacking the DNA repair proteins PARP-1, Ku86, or DNA-PKcs. J. Cell Biol. 167 627–638Google Scholar
  31. Fehrer C and Lepperdinger G 2005 Mesenchymal stem cell aging. Exp. Gerontol. 40 926–930PubMedCrossRefGoogle Scholar
  32. Ferron S, Mira H, Franco S, Cano-Jaimez M, Bellmunt E, Ramirez C, Farinas I and Blasco MA 2004 Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131 4059–4070PubMedCrossRefGoogle Scholar
  33. Ferron SR, Marques-Torrejon MA, Mira H, Flores I, Taylor K, Blasco MA and Farinas I 2009 Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. J. Neurosci. 29 14394–14407PubMedCrossRefGoogle Scholar
  34. Fibbe WE 2002 Mesenchymal stem cells. A potential source for skeletal repair. Ann. Rheum. Dis. 61 ii29–ii31PubMedGoogle Scholar
  35. Flores I, Cayuela ML and Blasco MA 2005 Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309 1253–1256PubMedCrossRefGoogle Scholar
  36. Forsyth NR, Wright WE and Shay JW 2002 Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69 188–197PubMedCrossRefGoogle Scholar
  37. Freude S, Hettich MM, Schumann C, Stohr O, Koch L, Kohler C, Udelhoven M, Leeser U, et al. 2009 Neuronal IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer's disease. FASEB J. 23 3315–3324PubMedCrossRefGoogle Scholar
  38. Gao J, Dennis JE, Muzic RF, Lundberg M and Caplan AI 2001 The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169 12–20PubMedCrossRefGoogle Scholar
  39. Gonzalez-Suarez E, Samper E, Flores JM and Blasco MA 2000 Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat. Genet. 26 114–117PubMedCrossRefGoogle Scholar
  40. Greenberg RA, Chin L, Femino A, Lee KH, Gottlieb GJ, Singer RH, Greider CW and DePinho RA 1999 Short dysfunctional telomeres impair tumorigenesis in the INK4a (delta2/3) cancer-prone mouse. Cell 97 515–525PubMedCrossRefGoogle Scholar
  41. Greider CW and Blackburn EH 1985 Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43 405–413PubMedCrossRefGoogle Scholar
  42. Hao LY, Armanios M, Strong MA, Karim B, Feldser DM, Huso D and Greider CW 2005 Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell 123 1121–1131PubMedCrossRefGoogle Scholar
  43. Harada H, Mitsuyasu T, Toyono T and Toyoshima K 2002 Epithelial stem cells in teeth. Odontology 90 1–6PubMedCrossRefGoogle Scholar
  44. Hayflick L and Moorheas PS 1961 The serial cultivation of human diploid cell strains. Exp. Cell Res. 25 585–621PubMedCrossRefGoogle Scholar
  45. Herrera E, Martinez A and Blasco MA 2000 Impaired germinal center reaction in mice with short telomeres. EMBO J. 19 472–481PubMedCrossRefGoogle Scholar
  46. Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW and Blasco MA 1999 Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 18 2950–2960PubMedCrossRefGoogle Scholar
  47. Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S and Yamakido M 1995 Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol. 155 3711–3715PubMedGoogle Scholar
  48. Hodes RJ, Hathcock KS and Weng NP 2002 Telomeres in T and B cells. Nat. Rev. Immunol. 2 699–706PubMedCrossRefGoogle Scholar
  49. Iwama H, Ohyashiki K, Ohyashiki JH, Hayashi S, Yahata N, Ando K, Toyama K, Hoshika A, Takasaki M, Mori M and Shay JW 1998 Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum. Genet. 102 397–402PubMedCrossRefGoogle Scholar
  50. Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, Sahin E, Kost-Alimova M, et al. 2011 Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469 102–106PubMedCrossRefGoogle Scholar
  51. Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C, Trumpp A and Rudolph KL 2007 Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat. Med. 13 742–747PubMedCrossRefGoogle Scholar
  52. Ju Z and Rudolph KL 2006 Telomeres and telomerase in cancer stem cells. Eur. J. Cancer 42 1197–1203PubMedCrossRefGoogle Scholar
  53. Jurgensen A, Mettler L, Volkov NI and Parwaresch R 1996 Proliferative activity of the endometrium throughout the menstrual cycle in infertile women with and without endometriosis. Fertil. Steril. 66 369–375PubMedGoogle Scholar
  54. Kassem M, Abdallah BM, Yu Z, Ditzel N and Burns JS 2004 The use of hTERT-immortalized cells in tissue engineering. Cytotechnology 45 39–46PubMedCrossRefGoogle Scholar
  55. Killick R, Scales G, Leroy K, Causevic M, Hooper C, Irvine EE, Choudhury AI, Drinkwater L, et al. 2009 Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochem. Biophys. Res. Commun. 386 257–262PubMedCrossRefGoogle Scholar
  56. Kirwan M, Vulliamy T, Marrone A, Walne AJ, Beswick R, Hillmen P, Kelly R, Stewart A, et al. 2009 Defining the pathogenic role of telomerase mutations in myelodysplastic syndrome and acute myeloid leukemia. Hum. Mutat. 30 1567–1573PubMedCrossRefGoogle Scholar
  57. Knapowski J, Wieczorowska-Tobis K and Witowski J 2002 Pathophysiology of ageing. J. Physiol. Pharmacol. 53 135–146PubMedGoogle Scholar
  58. Krtolica A and Campisi J 2003 Integrating epithelial cancer, aging stroma and cellular senescence. Adv. Gerontol. 11 109–116PubMedGoogle Scholar
  59. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and Dick JE 1994 A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367 645–648PubMedCrossRefGoogle Scholar
  60. Lee HW, Blasco MA, Gottlieb GJ, Horner JW, Greider CW and DePinho RA 1998 Essential role of mouse telomerase in highly proliferative organs. Nature 392 569–574PubMedCrossRefGoogle Scholar
  61. Lengauer C, Kinzler KW and Vogelstein B 1998 Genetic instabilities in human cancers. Nature 396 643–649PubMedCrossRefGoogle Scholar
  62. Liu L, DiGirolamo CM, Navarro PA, Blasco MA and Keefe DL 2004 Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp. Cell Res. 294 1–8PubMedCrossRefGoogle Scholar
  63. Martin JA and Buckwalter JA 2001 Telomere erosion and senescence in human articular cartilage chondrocytes. J. Gerontol. A Biol. Sci. Med. Sci. 56 B172–B179PubMedCrossRefGoogle Scholar
  64. Martin-Rivera L, Herrera E, Albar JP and Blasco MA 1998 Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc. Natl. Acad. Sci. U. S. A 95 10471–10476PubMedCrossRefGoogle Scholar
  65. Montjovent MO, Burri N, Mark S, Federici E, Scaletta C, Zambelli PY, Hohlfeld P, Leyvraz PF, Applegate LL and Pioletti DP 2004 Fetal bone cells for tissue engineering. Bone 35 1323–1333PubMedCrossRefGoogle Scholar
  66. Morrison SJ, Prowse KR, Ho P and Weissman IL 1996 Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5 207–216PubMedCrossRefGoogle Scholar
  67. Parsch D, Brummendorf TH, Richter W and Fellenberg J 2002 Replicative aging of human articular chondrocytes during ex vivo expansion. Arthritis Rheum. 46 2911–2916PubMedCrossRefGoogle Scholar
  68. Parsch D, Fellenberg J, Brummendorf TH, Eschlbeck AM and Richter W 2004 Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J. Mol. Med. 82 49–55PubMedCrossRefGoogle Scholar
  69. Pignolo RJ, Suda RK, McMillan EA, Shen J, Lee SH, Choi Y, Wright AC and Johnson FB 2008 Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 7 23–31PubMedCrossRefGoogle Scholar
  70. Plentz RR, Caselitz M, Bleck JS, Gebel M, Flemming P, Kubicka S, Manns MP and Rudolph KL 2004 Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma. Hepatology 40 80–86PubMedCrossRefGoogle Scholar
  71. Plentz RR, Wiemann SU, Flemming P, Meier PN, Kubicka S, Kreipe H, Manns MP and Rudolph KL 2003 Telomere shortening of epithelial cells characterises the adenoma-carcinoma transition of human colorectal cancer. Gut 52 1304–1307PubMedCrossRefGoogle Scholar
  72. Plunkett FJ, Franzese O, Belaramani LL, Fletcher JM, Gilmour KC, Sharifi R, Khan N, Hislop AD, et al. 2005 The impact of telomere erosion on memory CD8+ T cells in patients with X-linked lymphoproliferative syndrome. Mech. Ageing Dev. 126 855–865PubMedCrossRefGoogle Scholar
  73. Rando TA 2006 Stem cells, ageing and the quest for immortality. Nature 441 1080–1086PubMedCrossRefGoogle Scholar
  74. Richardson RM, Nguyen B, Holt SE, Broaddus WC and Fillmore HL 2007 Ectopic telomerase expression inhibits neuronal differentiation of NT2 neural progenitor cells. Neurosci. Lett. 421 168–172PubMedCrossRefGoogle Scholar
  75. Rolyan H, Scheffold A, Heinrich A, Begus-Nahrmann Y, Langkopf BH, Holter SM, Vogt-Weisenhorn DM, Liss B, et al. 2011 Telomere shortening reduces Alzheimer's disease amyloid pathology in mice. Brain 134 2044–2056PubMedCrossRefGoogle Scholar
  76. Rossi DJ, Jamieson CH and Weissman IL 2008 Stems cells and the pathways to aging and cancer. Cell 132 681–696PubMedCrossRefGoogle Scholar
  77. Roth A, Vercauteren S, Sutherland HJ and Lansdorp PM 2003 Telomerase is limiting the growth of acute myeloid leukemia cells. Leukemia 17 2410–2417PubMedCrossRefGoogle Scholar
  78. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C and DePinho RA 1999 Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96 701–712PubMedCrossRefGoogle Scholar
  79. Rudolph KL, Millard M, Bosenberg MW and DePinho RA 2001 Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat. Genet. 28 155–159PubMedCrossRefGoogle Scholar
  80. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M and Lansdorp PM 1999 Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 190 157–167PubMedCrossRefGoogle Scholar
  81. Saeed H, Abdallah BM, Ditzel N, Catala-Lehnen P, Qiu W, Amling M and Kassem M 2011 Telomerase-deficient mice exhibit bone loss due to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J. Bone Miner. Res Google Scholar
  82. Sahin E and DePinho RA 2010 Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464 520–528PubMedCrossRefGoogle Scholar
  83. Sarin KY, Cheung P, Gilison D, Lee E, Tennen RI, Wang E, Artandi MK, Oro AE and Artandi SE 2005 Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436 1048–1052PubMedCrossRefGoogle Scholar
  84. Satyanarayana A, Manns MP and Rudolph KL 2004 Telomeres and telomerase: a dual role in hepatocarcinogenesis. Hepatology 40 276–283PubMedCrossRefGoogle Scholar
  85. Schieker M, Gulkan H, Austrup B, Neth P and Mutschler W 2004 Telomerase activity and telomere length of human mesenchymal stem cells. Changes during osteogenic differentiation. Orthopade 33 1373–1377PubMedCrossRefGoogle Scholar
  86. Sharma HW, Sokoloski JA, Perez JR, Maltese JY, Sartorelli AC, Stein CA, Nichols G, Khaled Z, Telang NT and Narayanan R 1995 Differentiation of immortal cells inhibits telomerase activity. Proc. Natl. Acad. Sci. USA 92 12343–12346PubMedCrossRefGoogle Scholar
  87. Sharpless NE and DePinho RA 2004 Telomeres, stem cells, senescence, and cancer. J. Clin. Invest. 113 160–168PubMedGoogle Scholar
  88. Sharpless NE and DePinho RA 2007 How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol. 8 703–713PubMedCrossRefGoogle Scholar
  89. Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, Jensen TG and Kassem M 2002 Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20 592–596PubMedCrossRefGoogle Scholar
  90. Son NH, Murray S, Yanovski J, Hodes RJ and Weng N 2000 Lineage-specific telomere shortening and unaltered capacity for telomerase expression in human T and B lymphocytes with age. J. Immunol. 165 1191–1196PubMedGoogle Scholar
  91. Song Z, Wang J, Guachalla LM, Terszowski G, Rodewald HR, Ju Z and Rudolph KL 2010 Alterations of the systemic environment are the primary cause of impaired B and T lymphopoiesis in telomere-dysfunctional mice. Blood 115 1481–1489PubMedCrossRefGoogle Scholar
  92. Stenderup K, Justesen J, Clausen C and Kassem M 2003 Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33 919–926PubMedCrossRefGoogle Scholar
  93. Stewart SA 2005 Telomere maintenance and tumorigenesis: an ‘ALT’ernative road. Curr. Mol. Med. 5 253–257PubMedCrossRefGoogle Scholar
  94. T Miura, Y Katakura, K Yamamoto, N Uehara, T Tsuchiya, E H Kim and S Shirahata 2001 Neural stem cells lose telomerase activity upon differentiating into astrocytes. Cytotechnology 36 137–144PubMedCrossRefGoogle Scholar
  95. Usselmann B, Newbold M, Morris AG and Nwokolo CU 2001 Telomerase activity and patient survival after surgery for gastric and oesophageal cancer. Eur. J. Gastroenterol. Hepatol. 13 903–908PubMedCrossRefGoogle Scholar
  96. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB and Lansdorp PM 1994 Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA 91 9857–9860PubMedCrossRefGoogle Scholar
  97. Vaziri H, Schachter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D and Harley CB 1993 Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52 661–667PubMedGoogle Scholar
  98. von ZT, Burkle A and Kirkwood TB 2001 Stress, DNA damage and ageing — an integrative approach. Exp. Gerontol. 36 1049–1062Google Scholar
  99. Vulliamy T, Marrone A, Dokal I and Mason PJ 2002 Association between aplastic anaemia and mutations in telomerase RNA. Lancet 359 2168–2170PubMedCrossRefGoogle Scholar
  100. Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ and Dokal I 2004 Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat. Genet. 36 447–449PubMedCrossRefGoogle Scholar
  101. Wagner U, Pierer M, Wahle M, Moritz F, Kaltenhauser S and Hantzschel H 2004 Ex vivo homeostatic proliferation of CD4+ T cells in rheumatoid arthritis is dysregulated and driven by membrane-anchored TNF alpha. J. Immunol. 173 2825–2833PubMedGoogle Scholar
  102. Weissman IL 2000 Stem cells: units of development, units of regeneration, and units in evolution. Cell 100 157–168PubMedCrossRefGoogle Scholar
  103. Weng NP, Levine BL, June CH and Hodes RJ 1995 Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl. Acad. Sci. USA 92 11091–11094PubMedCrossRefGoogle Scholar
  104. Weng NP, Levine BL, June CH and Hodes RJ 1996 Regulated expression of telomerase activity in human T lymphocyte development and activation. J. Exp. Med. 183 2471–2479PubMedCrossRefGoogle Scholar
  105. Wright WE and Shay JW 1992 The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol. 27 383–389PubMedCrossRefGoogle Scholar
  106. Wu K, Higashi N, Hansen ER, Lund M, Bang K and Thestrup-Pedersen K 2000 Telomerase activity is increased and telomere length shortened in T cells from blood of patients with atopic dermatitis and psoriasis. J. Immunol. 165 4742–4747PubMedGoogle Scholar
  107. Yudoh K, Matsuno H, Nakazawa F, Katayama R and Kimura T 2001 Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J. Bone Miner. Res. 16 1453–1464PubMedCrossRefGoogle Scholar
  108. Zhang Y, Khan D, Delling J and Tobiasch E 2012 Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. Sci. World J. 2012 793823Google Scholar
  109. Zhao YM, Li JY, Lan JP, Lai XY, Luo Y, Sun J, Yu J, Zhu YY, Zeng FF, Zhou Q and Huang H 2008 Cell cycle dependent telomere regulation by telomerase in human bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun. 369 1114–1119PubMedCrossRefGoogle Scholar
  110. Zimmermann S, Voss M, Kaiser S, Kapp U, Waller CF and Martens UM 2003 Lack of telomerase activity in human mesenchymal stem cells. Leukemia 17 1146–1149PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  1. 1.Department of Endocrinology, School of MedicineStanford UniversityStanfordUSA
  2. 2.Department of Bio-technology & MicrobiologyLahore College for Women UniversityLahorePakistan

Personalised recommendations