Journal of Biosciences

, Volume 39, Issue 2, pp 201–209 | Cite as

Symbiosis as the way of eukaryotic life: The dependent co-origination of the body

  • Scott F GilbertEmail author


Molecular analyses of symbiotic relationships are challenging our biological definitions of individuality and supplanting them with a new notion of normal part–whole relationships. This new notion is that of a ‘holobiont’, a consortium of organisms that becomes a functionally integrated ‘whole’. This holobiont includes the zoological organism (the ‘animal’) as well as its persistent microbial symbionts. This new individuality is seen on anatomical and physiological levels, where a diversity of symbionts form a new ‘organ system’ within the zoological organism and become integrated into its metabolism and development. Moreover, as in normal development, there are reciprocal interactions between the ‘host’ organism and its symbionts that alter gene expression in both sets of cells. The immune system, instead of being seen as functioning solely to keep microbes out of the body, is also found to develop, in part, in dialogue with symbionts. Moreover, the immune system is actively involved in the colonization of the zoological organism, functioning as a mechanism for integrating microbes into the animal-cell community. Symbionts have also been found to constitute a second mode of genetic inheritance, providing selectable genetic variation for natural selection. We develop, grow and evolve as multi-genomic consortia/teams/ecosystems.


Evolution holobiont individuality symbionts symbiosis 



I wish to thank Dr V Nanjundiah for organizing this workshop, and Drs AI Tauber and J Sapp for their encouragement and discussions. This article is based on Gilbert et al. 2012.


  1. Agrawal AA 2001 Phenotypic plasticity in the interactions and evolution of species. Science 294 321–326CrossRefPubMedGoogle Scholar
  2. Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, Clardy J and King N 2012 A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 1 e00013PubMedCentralCrossRefPubMedGoogle Scholar
  3. Ballal SA, Gallini CA, Segata N, Huttenhower C and Garrett WS 2011 Host and gut microbiota symbiotic factors: lessons from inflammatory bowel disease and successful symbionts. Cell. Microbiol. 13 508–517CrossRefPubMedGoogle Scholar
  4. Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE and Guilemin K 2006 Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 297 374–386CrossRefPubMedGoogle Scholar
  5. Bateson P 1988 The biological evolution of cooperation and trust; in Trust: Making and breaking cooperative relations (ed) D Gambetta (Oxford: Blackwell) pp 14–30Google Scholar
  6. Bäckhed F, Ley RE, Sonnenbury JL, Peterson DA and Gordon JI 2005 Host-bacterial mutualism in the human intestine. Science 307 1915–1920CrossRefPubMedGoogle Scholar
  7. Bordenstein SR, O’Hara FP and Werren JH 2001 Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409 707–710CrossRefPubMedGoogle Scholar
  8. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J and Cryan JF 2011 Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108 16050–16055PubMedCentralCrossRefPubMedGoogle Scholar
  9. Bruckner RM and Bordenstein SR 2012 Speciation by symbiosis. Trends Ecol. Evol. 27 443–451CrossRefGoogle Scholar
  10. Burnet FM and Fenner F 1949 The production of antibodies 2nd edition (Melbourne: Macmillan and Company)Google Scholar
  11. Chow J, Lee SM, Shen Y, Khosravi A and Mazmanian SK 2010 Host bacterial symbiosis in health and disease. Adv. Immunol. 107 243–274PubMedCentralCrossRefPubMedGoogle Scholar
  12. Clarke E 2010 The problem of biological individuality. Biol. Theory 5 312–325CrossRefGoogle Scholar
  13. Collins SM, Surette M and Bercik P 2012 The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10 735–742Google Scholar
  14. Cordaux R, Michel-Salzat A, Frelon-Raimond M, Rigaud T and Bouchon D 2004 Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare: evolutionary implications. Heredity 93 78–84CrossRefPubMedGoogle Scholar
  15. Cryan JF and Dinan TG 2012 Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13 701–712Google Scholar
  16. Cryan JF and O'Mahony SM 2011 The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Motility 23 187–192CrossRefGoogle Scholar
  17. Dale C and Moran NA 2006 Molecular interactions between bacterial symbionts and their hosts. Cell 126 453–465CrossRefPubMedGoogle Scholar
  18. Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K and King N 2011 Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev. Biol. 357 73–82PubMedCentralCrossRefPubMedGoogle Scholar
  19. Douglas AE 1988 Experimental studies on the mycetome symbiosis in the leafhopper Euscelis incisus. J. Insect Physiol. 34 1043–1053CrossRefGoogle Scholar
  20. Douglas AE 2010 The symbiotic habit (Princeton: Princeton University Press)Google Scholar
  21. Duan J, Chung H, Troy E and Kasper DL 2010 Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing γ/δ T cells. Cell Host Microbe 7 140–150CrossRefPubMedGoogle Scholar
  22. Dunbar HE, Wilson AC C, Ferguson NR and Moran NA 2007 Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 5 e96PubMedCentralCrossRefPubMedGoogle Scholar
  23. Eberl G 2010 A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol. 3 450–460CrossRefPubMedGoogle Scholar
  24. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, et al. 2013 Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110 9066–9071Google Scholar
  25. Fraune S and Bosch TCG 2010 Why bacteria matter in animal development and evolution. Bioessays 32 571–580Google Scholar
  26. Geddes P and Mitchell PC 1911 Morphology; in Encyclopedia Britannica 11th edition (Cambridge, UK: Cambridge University Press) pp 863–869Google Scholar
  27. Gilbert SF 1992 Cells in search of community: Critiques of Weismannism and selectable units in ontogeny. Biol. Phil. 7 473–487Google Scholar
  28. Gilbert SF 2001 Ecological developmental biology: developmental biology meets the real world. Dev. Biol. 233 1–12CrossRefPubMedGoogle Scholar
  29. Gilbert SF 2003 The genome in its ecological context: philosophical perspectives on interspecies epigenesis. Ann. NY Acad. Sci. 981 202–218CrossRefGoogle Scholar
  30. Gilbert SF 2011 Symbionts as genetic sources of hereditable variation; in Transformations of Lamarckism: From subtle fluids to molecular biology (eds) SB Gissis and E Jablonka (Cambridge, MA: MIT Press) pp 283–293CrossRefGoogle Scholar
  31. Gilbert SF and Epel D 2009 Ecological developmental biology: Integrating epigenetics, medicine, and evolution (Sunderland: Sinauer Associates)Google Scholar
  32. Gilbert SF, Sapp J and Tauber AI 2012 A symbiotic view of life: We have never been individuals. Quart. Rev. Biol. 87 325–341Google Scholar
  33. Gordon JI 2012 Honor thy gut symbionts redux. Science 336 1251–1253CrossRefPubMedGoogle Scholar
  34. Hamburger V 1988 The heritage of experimental embryology (New York: Oxford University Press)Google Scholar
  35. Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M and Michel G 2010 Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464 908–912CrossRefPubMedGoogle Scholar
  36. Hehemann JH, Kelly AG, Pudlo NA, Martens EC and Boraston AB 2012 Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl. Acad. Sci. USA 109 19786–19791PubMedCentralCrossRefPubMedGoogle Scholar
  37. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H and Pettersson S 2011 Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 108 3047–3052PubMedCentralCrossRefGoogle Scholar
  38. Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, Kambayashi T, LaRosa DF, et al. 2012 Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat. Med. 18 538–546PubMedCentralCrossRefPubMedGoogle Scholar
  39. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG and Gordon JI 2001 Molecular analysis of commensal host-microbial relationships in the intestine. Science 291 881–884CrossRefPubMedGoogle Scholar
  40. Hooper LV, Littman DR and Macpherson AJ 2012 Interactions between the microbiota and the immune system. Science 336 1268–1273CrossRefPubMedGoogle Scholar
  41. Huxley TH 1852 Upon animal individuality. Edinburgh New Philos. J. 53 172–177Google Scholar
  42. Kamra DN 2005 Rumen microbial ecosystem. Curr. Sci. 89 124–135Google Scholar
  43. Kasemeier-Kulesa JC, Teddy JM, Postovit LM, Seftor EA, Seftor RE, Hendrix MJ and Kulesa PM 2008 Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Dev. Dyn. 237 2657–2666Google Scholar
  44. Klein J 1982 Immunology: The science of self-nonself discrimination (New York: John Wiley & Sons)Google Scholar
  45. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, Gonzalez A, Werner JJ, et al. 2012 Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150 470–480PubMedCentralCrossRefPubMedGoogle Scholar
  46. Lanning DK, Rhee K-J and Knight KL 2005 Intestinal bacteria and development of the B-lymphocyte repertoire. Trends Immunol. 26 419–425CrossRefPubMedGoogle Scholar
  47. Lee YK and Mazmanian SK 2010 Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330 1768–1773PubMedCentralCrossRefPubMedGoogle Scholar
  48. Leuckart R 1851 Über den Polymorphismus der Individuen oder die Erscheinungen der Arbeitsteilung in der Natur. Ein Beitrag zur Lehre vom Generationswechsel (Giessen, Germany: Ricker)Google Scholar
  49. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD and Gordon JI 2005 Obesity alters gut microbial ecology. Proc. Nat. Acad. Sci. USA 112 11070–11075Google Scholar
  50. Ley, RE, Peterson DA and Gordon JI 2006 Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124 837–848CrossRefPubMedGoogle Scholar
  51. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, et al. 2008 Evolution of mammals and their gut microbes. Science 320 1647–1651PubMedCentralCrossRefPubMedGoogle Scholar
  52. Limoges C 1994 Milne-Edwards, Darwin, Durkheim and Division of Labour: A case study in reciprocal conceptual exchanges between the social and the natural sciences; in The natural sciences and social sciences: Some critical and historical perspectives (ed) IB Cohen (Dordrecht: Kluwer Academic Publishers) pp 317–343CrossRefGoogle Scholar
  53. MacDonald SJ, Thomas GH and Douglas AE 2011 Genetic and metabolic determinants of nutritional phenotype in an insect-bacterial symbiosis. Mol. Ecol. 20 2073–2084CrossRefPubMedGoogle Scholar
  54. Margulis L 1981 Symbiosis in cell evolution: Life and its environment on the early earth (New York: WH Freeman)Google Scholar
  55. Margulis L and Fester R 1991 Symbiosis as a source of evolutionary innovation (Cambridge, MA: MIT Press)Google Scholar
  56. Margulis L and Sagan D 2001 The beast with five genomes. Nat. Hist. 110 38Google Scholar
  57. Matzinger P 1994 Tolerance, danger, and the extended family. Ann. Rev. Immunol. 12 991–1045CrossRefGoogle Scholar
  58. Mazmanian SK, Round JL and Kasper DL 2008 A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453 620–625CrossRefPubMedGoogle Scholar
  59. McCutcheon JP and von Dohlen CD 2011 An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr. Biol. 21 1366–1372PubMedCentralCrossRefPubMedGoogle Scholar
  60. McFall-Ngai MJ 2002 Unseen forces: the influences of bacteria on animal development. Dev. Biol. 242 1–14CrossRefPubMedGoogle Scholar
  61. McFall-Ngai M, Nyholm SV and Castillo MG 2010 The role of the immune system in the initiation and persistence of the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 22 48–53PubMedCentralCrossRefPubMedGoogle Scholar
  62. McFall-Ngai M, Heath-Heckman EA C, Gillette AA, Peyer SM and Harvie EA 2012 The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 24 3–8Google Scholar
  63. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, et al. 2013 Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110 3229–3236PubMedCentralCrossRefPubMedGoogle Scholar
  64. McLean PG, Bergonzelli GE, Collins SM and Bercik P 2012 Targeting the microbiota-gut-brain axis to modulate behavior: which bacterial strain will translate best to humans? Proc. Natl. Acad. Sci. USA 109 E174PubMedCentralCrossRefPubMedGoogle Scholar
  65. Milne-Edwards H 1827 Organisation; in Dictionnaire classique d'histoire naturelle (ed) JBGM Bory de Saint-Vincent (Paris: Beaudoin) pp 332–344Google Scholar
  66. Moran NA 2007 Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. USA 104 8627–8633PubMedCentralCrossRefPubMedGoogle Scholar
  67. Mulle JG, Sharp WG and Cubells JF 2013 The gut microbiome: a new frontier in autism research. Curr. Psychiatry Rep. 15 337Google Scholar
  68. Niess JH, Leithäuser F, Adler G and Reimann J 2008 Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J. Immunol. 180 559–568CrossRefPubMedGoogle Scholar
  69. Nyhart LK and Lidgard S 2011 Individuals at the center of biology: Rudolf Leuckart's Polymorphismus der Individuen and the ongoing narrative of parts and wholes. With an annotated translation. J. Hist. Biol. 44 373–443CrossRefPubMedGoogle Scholar
  70. Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, Matsuki T, Nonaka K, et al. 2010 Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc. Natl. Acad. Sci. USA 107 7419–7424PubMedCentralCrossRefPubMedGoogle Scholar
  71. Oliver KM, Degnan PH, Hunter MS and Moran NA 2009 Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325 992–994CrossRefPubMedGoogle Scholar
  72. Pannebakker BA, Loppin B, Elemans CP H, Humblot L and Vavre F 2007 Parasitic inhibition of cell death facilitates symbiosis. Proc. Natl. Acad. Sci. USA 104 213–215PubMedCentralCrossRefPubMedGoogle Scholar
  73. Peterson DA, McNulty NP, Guruge JL and Gordon JI 2007 IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2 328–339CrossRefPubMedGoogle Scholar
  74. Pradeu T 2010 What is an organism? An immunological answer. Hist. Philos. Life Sci. 32 247–268PubMedGoogle Scholar
  75. Pradeu T 2011 A mixed self: the role of symbiosis in development. Biol. Theory 6 80–88CrossRefGoogle Scholar
  76. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, et al. 2010 A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 59–65PubMedCentralCrossRefPubMedGoogle Scholar
  77. Rawls JF, Samuel BS and Gordon JI 2004 Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 101 4596–4601PubMedCentralCrossRefPubMedGoogle Scholar
  78. Rhee K-J, Sethupathi P, Driks A, Lanning DK and Knight KL 2004 Roles of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J. Immunol. 172 1118–1124CrossRefPubMedGoogle Scholar
  79. Rhee SH, Pothoulakis C and Mayer EA 2009 Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6 306–314Google Scholar
  80. Rosenberg E, Koren O, Reshef L, Efrony R and Zilber-Rosenberg I 2007 The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5 355 – 362Google Scholar
  81. Round JL, O'Connell RM and Mazmanian SK 2010 Coordination of tolerogenic immune responses by the commensal microbiota. J. Autoimmunity 34 J220–J225CrossRefGoogle Scholar
  82. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA and Mazmanian SK 2011 The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332 974–977PubMedCentralCrossRefPubMedGoogle Scholar
  83. Sapp J 1994 Evolution by association: A history of symbiosis (New York: Oxford University Press)Google Scholar
  84. Sapp J 2002 Paul Buchner (1886–1978) and hereditary symbiosis in insects. Int. Microbiol. 5 145–150CrossRefPubMedGoogle Scholar
  85. Sapp J 2009 The new foundations of evolution: On the tree of life (New York: Oxford University Press)Google Scholar
  86. Savinov AB 2011 Autocenosis and democenosis as individual- and population-level ecologicla categories in terms of symbiogenesis and systems approach. Russian J. Ecol. 42 179–185Google Scholar
  87. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I and Rosenberg E 2010 Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 107 20051–20056PubMedCentralCrossRefPubMedGoogle Scholar
  88. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, et al. 2013 Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339 548–554PubMedCentralCrossRefPubMedGoogle Scholar
  89. Stappenbeck TS, Hooper LV and Gordon JI 2002 Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA 99 15451–15455PubMedCentralCrossRefPubMedGoogle Scholar
  90. Stearns SC 2007 Are we stalled part way through a major evolutionary transition from individual to group? Evolution 61 2275–2280CrossRefPubMedGoogle Scholar
  91. Stewart TA and Mintz B 1981 Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 78 6314–6318PubMedCentralCrossRefPubMedGoogle Scholar
  92. Tauber AI 1994 The immune self: Theory or metaphor? (Cambridge, UK: Cambridge University Press)CrossRefGoogle Scholar
  93. Tauber AI 2000 Moving beyond the immune self? Semin. Immunol. 12 241–248CrossRefPubMedGoogle Scholar
  94. Tauber AI 2008a. Expanding immunology: defense versus ecological perspectives. Perspec. Biol. Med. 51 270–284Google Scholar
  95. Tauber AI 2009 The biological notion of self and non-self; in Stanford encyclopedia of philosophy (ed) EN Zelta (
  96. Thomas L 1974 The lives of a cell: Notes of a biology watcher (New York: Viking Press)Google Scholar
  97. Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC and Fukatsu T 2010 Symbiotic bacterium modifies aphid body color. Science 330 1102–1104CrossRefPubMedGoogle Scholar
  98. Turnbaugh PJ and Gordon JI 2009 The core gut microbiome, energy balance and obesity. J. Physiol. 587 4153–4158PubMedCentralCrossRefPubMedGoogle Scholar
  99. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R and Gordon JI 2007 The human microbiome project. Nature 449 804–810PubMedCentralCrossRefPubMedGoogle Scholar
  100. Ulvestad E 2007 Defending life: The nature of host-parasite relations (Dordrecht: Springer)Google Scholar
  101. Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L and Olofsson TC 2012 Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7 e33188PubMedCentralCrossRefPubMedGoogle Scholar
  102. Vogel KJ and Moran NA 2011 Sources of variation in dietary requirements in an obligate nutritional symbiosis. Proc. R. Soc. B: Biol. Sci. 278 115–121CrossRefGoogle Scholar
  103. Weiss BL, Maltz M and Aksoy S 2012 Obligate symbionts activate immune system development in the tsetse fly. J. Immunol. 188 3395–3403PubMedCentralCrossRefPubMedGoogle Scholar
  104. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC and Siuzdak G 2009 Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 106 698–703Google Scholar
  105. Wilson EB 1896 The cell in development and inheritance (New York: Macmillan) p 41Google Scholar
  106. Zilber-Rosenberg I and Rosenberg E 2008 Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32 723–735CrossRefPubMedGoogle Scholar
  107. Zivkovic AM, German JB, Lebrilla CB and Mills DA 2011 Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. USA 108 4653–4658PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  1. 1.Department of BiologySwarthmore CollegeSwarthmoreUSA
  2. 2.Biotechnology InstituteUniversity of HelsinkiHelsinkiFinland

Personalised recommendations