Advertisement

Journal of Biosciences

, Volume 38, Issue 2, pp 229–237 | Cite as

Candidate gene makers for Candidatus Liberibacter asiaticus for detecting citrus greening disease

  • Madhugiri Nageswara-RaoEmail author
  • Mike Irey
  • Stephen M Garnsey
  • Siddarame GowdaEmail author
Brief communication

Abstract

Citrus Huanglongbing (HLB) also known as citrus greening is one of the most devastating diseases of citrus worldwide. The disease is caused by Candidatus Liberibacter bacterium, vectored by the psyllid Diaphorina citri Kuwayama and Trioza erytreae Del Guercio. Citrus plants infected by the HLB bacterium may not show visible symptoms sometimes for years following infection. The aim of this study was to develop effective gene-specific primer pairs for polymerase chain reaction based method for quick screening of HLB disease. Thirty-two different gene-specific primer pairs, across the Ca. Liberibacter asiaticus genome, were successfully developed. The possibility of these primer pairs for cross-genome amplification across ‘Ca. Liberibacter africanus’ and ‘Ca. Liberibacter americanus’ were tested. The applicability of these primer pairs for detection and differentiation of Ca Liberibacter spp. is discussed.

Keywords

Citrus greening Candidatus Liberibacter cross-amplification DNA markers polymerase chain reaction 

Notes

Acknowledgements

This research was supported by the Florida Citrus Production Research Advisory Council, Florida, USA. The authors also thank Dr. William O Dawson for permission to use his laboratory and greenhouse facilities.

References

  1. An SH, Kim SM and Park JY 2009 Isolation and characterization of microsatellite markers for the clam Ruditapes philippinarum and cross-species amplification with the clam Ruditapes variegate. Conserv. Genet. 10 1821–1823CrossRefGoogle Scholar
  2. Asp T, Frei UK, Didion T, Nielsen KK and Lubberstedt T 2007 Frequency, type, and distribution of EST-SSRs from three genotypes of Lolium perenne, and their conservation across orthologous sequences of Festuca arundinacea, Brachypodium distachyon, and Oryza sativa. BMC Plant Biol. 7 36PubMedCrossRefGoogle Scholar
  3. Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS and Gupta PK 2004 DNA polymorphism among 18 species of TriticumAegilops complex using wheat EST–SSRs. Plant Sci. 166 349–356CrossRefGoogle Scholar
  4. Booth W, Bogdanowicz SM, Prodöhl PA, Harrison RG, Schal C and Vargo EL 2007 Identification and characterization of 10 polymorphic microsatellite loci in the German cockroach, Blattella germanica. Mol. Ecol. Notes. 7 648–650CrossRefGoogle Scholar
  5. Bové JM 1986 Greening in Arab Peninsula: Towards new techniques for its detection and control. FAO Plant Prot. Bull. 34 7-14Google Scholar
  6. Bové JM 2006 Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88 7–37Google Scholar
  7. Capoor SP, Rao DG and Viswanath SM 1967 Diaphorina citri Kuway., a vector of the Huanglongbing disease of citrus in India. Indian J. Agric. Sci. 37 572–576Google Scholar
  8. Chen C, Bowman KD, Choi YA, Dang PM, Nageswara-Rao M, Huang S, Soneji JR, McCollum TG and Gmitter FG Jr 2008 EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet. Genomes 4 1–10CrossRefGoogle Scholar
  9. Clauss MJ, Cobban H and Mitchell-Olds T 2002 Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). Mol. Ecol. 11 591–601PubMedCrossRefGoogle Scholar
  10. Da Graca JV and Korsten L 2004. Citrus Huanglongbing: Review, present status and future strategies; in Diseases of fruits and vegetables vol I (ed) SAMH Naqui (Dordrecht, The Netherlands: Kluwer Academic Publishers) pp 229–245Google Scholar
  11. Das AK 2004 Rapid detection of Candidatus Liberibacter asiaticus, the bacterium associated with citrus Huanglongbing (Greening) disease using PCR. Curr. Sci. 87 1183–1185Google Scholar
  12. Das AK 2009 Molecular identification and characterization of citrus greening bacterium, Candidatus Liberibacter asiaticus associated with decline of Nagpur mandarin orange in Vidarbha region, Maharashtra. Curr. Sci. 96 890–892Google Scholar
  13. Das AK, Rao CN and Singh S 2007 Presence of citrus greening (Huanglongbing) disease and its psyllid vector in the North-Eastern region of India confirmed by PCR technique. Curr. Sci. 92 1759–1763Google Scholar
  14. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P and Laigret F 2002 Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 105 127–138PubMedCrossRefGoogle Scholar
  15. Dong J, Guang-Yan Z and Qi-Bing H 2006 Analysis of microsatellites in Citrus unigenes. Acta Genefica Sinica 33 345–353CrossRefGoogle Scholar
  16. Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, Liu L, Gabriel D, Vahling CM, Williams K, Dickerman A, Sun Y and Gottwald TR 2009 Complete genome sequence of citrus huanglongbing bacterium, `Candidatus Liberibacter asiaticus- obtained through metagenomics. Mol. Plant-Microbe Interact. 22 1011–1020PubMedCrossRefGoogle Scholar
  17. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC and Mian MAR 2004 Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor. Appl. Genet. 108 414–422PubMedCrossRefGoogle Scholar
  18. Gaitán-Solís E, Duque MC, Edwards KJ and Tohme J 2002 Microsatellite repeats in common bean (Phaseolus vulgaris): Isolation, characterization, and cross-species amplification in Phaseolus spp. Crop Sci. 42 2128–2136CrossRefGoogle Scholar
  19. Garnier M, Danel N and Bové JM 1984 The greening organism is a gram-negative bacterium; in Proc. 9th Conf. Intl. Org. Citrus Virologists (eds) SM Garnsey, LW Timmer and JA Dodds (Riverside, CA, USA: University of California) pp 115–124Google Scholar
  20. Gauffre B and Coeur d’acier A 2006 New polymorphic microsatellite loci, cross-species amplification and PCR multiplexing in the black aphid, Aphis fabae Scopoli. Mol. Ecol. Notes 6 440–442CrossRefGoogle Scholar
  21. Ginwall HS, Mittal N, Maurya SS, Barthwal S and Bhatt P 2011 Genomic DNA isolation and identification of chloroplast microsatellite markers in Asparagus racemosus Willd. through cross-amplification. Indian J. Biotechnol. 10 33–38Google Scholar
  22. Gottwald TR, Aubert B and Zhao X-Y 1989 Preliminary analysis of citrus greening (Huanglongbing) epidemics in the People's Republic of China and French Reunion Island. Phytopathol. 79 687-693CrossRefGoogle Scholar
  23. Gottwald TR, da Graça JV and Bassanezi RB 2007 Citrus Huanglongbing: The pathogen and its impact. Plant Health Progress doi: 10.1094/PHP-2007-0906-01-RV Google Scholar
  24. Guo L, Tang J, Li H and Jia J 2003 Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol. Breed. 12 245–261CrossRefGoogle Scholar
  25. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N and Balyan HS 2003 Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genom. 270 315–323CrossRefGoogle Scholar
  26. Halbert SE and Manjunath KL 2004 Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Florida Entomol. 87 330–352CrossRefGoogle Scholar
  27. Jagoueix S, Bové JM and Garnier M 1994 The phloem-limited bacterium of greening disease of citrus is a member of the a-subdivision of the Proteobacteria. Int. J. Syst. Bacteriol. 44 379–386PubMedCrossRefGoogle Scholar
  28. Jagoueix S, Bové JM and Garnier M 1997 Comparison of the 16S/23S ribosomal intergenic regions of “Candidatus Liberibacter asiaticum” and “Candidatus Liberibacter africanum” the two species associated with citrus Huanglongbing (greening) disease. Int. J. Syst. Bacteriol. 47 224–227PubMedCrossRefGoogle Scholar
  29. Jones RC, Mcnally J and Rossetto M 2002 Isolation of microsatellite loci from a rainforest tree Elaeocarpus grandis (Elaeocarpaceae), and amplification across closely related taxa. Mol. Ecol. Notes 2 179–181CrossRefGoogle Scholar
  30. Li W, Hartung JS and Levy LE 2006 Quantitative real time PCR for detection and identification of ‘Candidatus Liberibacter species’ associated with citrus huanglongbing. J. Microbiol. Methods 66 104–115PubMedCrossRefGoogle Scholar
  31. Lin H, Doddapaneni H, Bai X, Yao J, Zhao X and Civerolo EL 2008 Acquisition of uncharacterized sequences from Candidatus Liberibacter, an unculturable bacteria, using an improved genomic walking. Mol. Cell. Probes 22 30–37PubMedCrossRefGoogle Scholar
  32. McClean APD and Oberholzer PCJ 1965 Citrus psylla, a vector of the greening disease of sweet orange. S. Afr. J. Agric. Sci. 8 297–298Google Scholar
  33. Mittal N and Dubey AK 2010 A novel set of highly polymorphic chloroplast, microsatellite and ISSR markers for the biofuel crop Jatropha curcas. EurAsia J. BioSci. 4 119–131CrossRefGoogle Scholar
  34. National Research Council 2010 Strategic planning for the Florida citrus industry: Addressing citrus greening http://www.nap.edu/catalog/12880.html
  35. Peakall R, Gilmore S, Keys W, Morgante M and Rafalski A 1998 Cross-species amplification of soyabean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera, implications for the transferability of SSRs in plants. Mol. Biol. Evol. 15 1275–1287PubMedCrossRefGoogle Scholar
  36. Pelz-Stelinski KS, Brlansky RH and Rogers ME 2010 Transmission of Candidatus Liberibacter asiaticus by the Asian citrus psyllid, Diaphorina citri. J. Economic Entomol. 103 1531–1541CrossRefGoogle Scholar
  37. Quinn AE, Ezaz T, Sarre SD, Graves JAM and Georges A 2010 Extension, single-locus conversion and physical mapping of sex chromosome sequences identify the Z microchromosome and pseudo-autosomal region in a dragon lizard, Pogona vitticeps. Heridity 104 410–417CrossRefGoogle Scholar
  38. Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya M, Bonierbale MW, Iglesias C and Tohme J 2000 Cross-species amplification of cassava (Manihot esculenta) Euphorbiaceae microsatellites: allelic polymorphism and degree of relationships. Am. J. Bot. 87 1647–1655PubMedCrossRefGoogle Scholar
  39. Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L and May GD 2004 Tall fescue EST-SSR markers with transferability across several grass species. Theor. Appl. Genet. 109 783–791PubMedCrossRefGoogle Scholar
  40. Scott IAW, Hayes CMJ, Koegh S and Morrison SF 2001 Isolation and characterization of novel microsatellite markers from the Australian water skin Eulamprus kosciuskoi and cross-species amplification in other members of the species-group. Mol. Ecol. Notes 1 28–30CrossRefGoogle Scholar
  41. Sim SC, Yu JK, Jo Y, Sorrells ME and Jung G 2009 Transferability of cereal EST-SSR markers to ryegrass. Genome 52 431–437PubMedCrossRefGoogle Scholar
  42. Soneji JR, Nageswara-Rao M, Sudarshana P, Panigrahi J and Kole C 2010 Current status on on-going genome initiatives; in Principles and practices of plant genomics vol 3 Structural and functional genomics (eds) C Kole and AG Abbott (Enfield, New Hampshire, USA: Science Publishers Inc. & New York, USA: CRC Press, Taylor and Francis Group) pp 305–353Google Scholar
  43. Stapley J, Hayes CM, Webb JK and Keogh JS 2005 Novel microsatellite loci identified from the Australian eastern small-eyed snake (Elapidae: Rhinocephalus nigrescens) and cross species amplification in the related genus Suta. Mol. Ecol. Notes 5 54–56CrossRefGoogle Scholar
  44. Sun HS and Kirkpatric BW 1996 Exploiting dinucleotide microsatellites conserved among mammalian species. Mamm. Gen. 7 128–132CrossRefGoogle Scholar
  45. Tatineni S, Sagaram US, Gowda S, Robertson C, Dawson WO, Iwanami T and Wang N 2008 In planta distribution of ‘Candidatus Liberibacter asiaticus’ as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathology 98 592–599PubMedCrossRefGoogle Scholar
  46. Teixeira DC, Danet JL, Eveillard S, Martins EC, Jesus Jr WC, Yamamoto PT, Lopes SA, Bassanezi EB, Ayres AJ, Saillard C and Bové JM 2005 Citrus huanglongbing in São Paulo, Brazil: PCR detection of the ‘Candidatus Liberibacter’ species associated with the disease. Mol. Cell. Probes 19 173–179CrossRefGoogle Scholar
  47. Thiel T, Michalek W, Varshney R and Graner A 2003 Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106 411–422PubMedGoogle Scholar
  48. Varshney RK, Graner A and Sorrells ME 2005 Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23 48–55PubMedCrossRefGoogle Scholar
  49. Walser B and Heckel W 2008 Microsatellite markers for the common vole (Microtus arvalis) and their cross-species utility. Conserv. Genet. 9 479–481CrossRefGoogle Scholar
  50. White G and Powell W 1997 Isolation and characterization of microsatellite loci in Swietenia humilis (Meliaceae): An endangered tropical hardwood species. Mol. Ecol. 6 851–860CrossRefGoogle Scholar
  51. Williamson JE, Huebinger RM, Sommer JA, Louis Jr EE and Barber RC 2002 Development and cross-species amplification of 18 microsatellite markers in the Sumatran tiger (Panthers tigris sumatrae). Mol. Ecol. Notes 2 110–112CrossRefGoogle Scholar
  52. Ya-mei G, Yi-qiang H, Hui T, Dong-mei S, Yan-jie W and Wei-dong W 2008 Analysis of simple sequence repeats in genomes of Rhizobia. Agric. Sci. China 7 1189–1195CrossRefGoogle Scholar
  53. Yao X, Zhang J, Ye Q and Huang H 2008 Characterization of 14 novel microsatellite loci in the endangered Liriodendron chinense (Magnoliaceae) and cross-species amplification in closely related taxa. Conserv. Genet. 9 483–485CrossRefGoogle Scholar
  54. Yasodha R, Ghosh M, Sumathi R and Gurumurthy K 2005 Cross-species amplification of eucalyptus SSR markers in Casuarinaceae. Acta. Bot. Croat. 64 115–120Google Scholar
  55. Yu F, Wang B, Feng S, Wang J, Li W and Wu Y 2011 Development, characterization, and cross-species/genera transferability of SSR markers for rubber tree (Hevea brasiliensis). Plant Cell Rep. 30 335–344PubMedCrossRefGoogle Scholar
  56. Zeid M, Yu JK, Goldowitz I, Dentond ME, Costich DE, Jayasuriya CT, Saha M, Elshire R, Benscher D, Breseghello F, Munkvold J, Varshney RK, Belay G and Sorrells ME 2010 Cross-amplification of EST-derived markers among 16 grass species. Field Crops Res. 118 28–35CrossRefGoogle Scholar
  57. Zhang D, Yan L, Ji Y, Kang LE, Godfrey HM and Huang Z 2003 Isolation, characterization and cross-species amplification of eight microsatellite DNA loci in the migratory locust (Locusta migratoria). Mol. Ecol. Notes 3 483–486CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  1. 1.University of Florida, IFAS, Citrus Research and Education CenterLake AlfredUSA
  2. 2.Department of Plant SciencesThe University of TennesseeKnoxvilleUSA
  3. 3.US Sugar CorporationClewistonUSA

Personalised recommendations