Journal of Biosciences

, Volume 37, Issue 5, pp 887–896 | Cite as

Molecular-based rapid inventories of sympatric diversity: A comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians

Article

Abstract

Molecular markers offer a universal source of data for quantifying biodiversity. DNA barcoding uses a standardized genetic marker and a curated reference database to identify known species and to reveal cryptic diversity within well-sampled clades. Rapid biological inventories, e.g. rapid assessment programs (RAPs), unlike most barcoding campaigns, are focused on particular geographic localities rather than on clades. Because of the potentially sparse phylogenetic sampling, the addition of DNA barcoding to RAPs may present a greater challenge for the identification of named species or for revealing cryptic diversity. In this article we evaluate the use of DNA barcoding for quantifying lineage diversity within a single sampling site as compared to clade-based sampling, and present examples from amphibians. We compared algorithms for identifying DNA barcode clusters (e.g. species, cryptic species or Evolutionary Significant Units) using previously published DNA barcode data obtained from geography-based sampling at a site in Central Panama, and from clade-based sampling in Madagascar. We found that clustering algorithms based on genetic distance performed similarly on sympatric as well as clade-based barcode data, while a promising coalescent-based method performed poorly on sympatric data. The various clustering algorithms were also compared in terms of speed and software implementation. Although each method has its shortcomings in certain contexts, we recommend the use of the ABGD method, which not only performs fairly well under either sampling method, but does so in a few seconds and with a user-friendly Web interface.

Keywords

ABGD biodiversity inventory cluster analysis cryptic species cytochrome oxidase subunit I DNA barcode of life Fuzzy Identification GMYC SAP 

Supplementary material

12038_2012_9255_MOESM1_ESM.pdf (71 kb)
Esm 1(PDF 71.1 KB)

References

  1. Alonso R, Crawford AJ and Bermingham E 2012 Molecular phylogeny of an endemic radiation of Cuban toads (Bufonidae: Peltophryne) based on mitochondrial and nuclear genes. J. Biogeogr. 39 434–451Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ 1990 Basic local alignment search tool. J. Mol. Biol. 215 403–410PubMedGoogle Scholar
  3. Baker CS and Palumbi SR 1994 Which whales are hunted? A molecular genetic approach to monitoring whaling. Science 265 1538–1539PubMedCrossRefGoogle Scholar
  4. Blaxter M 2003 Molecular systematics: Counting angels with DNA. Nature 421 122–124PubMedCrossRefGoogle Scholar
  5. Blaxter ML 2004 The promise of a DNA taxonomy. Philos. Transac. R. Soc. London Ser. B Biol. Sci. 359 669–679Google Scholar
  6. Boykin LM, Armstrong KF, Kubatko L and De Barro P 2012 Species delimitation and global biosecurity. Evol. Bioinformatics 8 1–37Google Scholar
  7. Che J, Chen H-M, Yang J-X, Jin J-Q, Jiang KE, Yuan Z-Y, Murphy RW and Zhang Y-P 2012 Universal COI primers for DNA barcoding amphibians. Mol. Ecol. Resour. 12 247–258Google Scholar
  8. Coyne JA and Orr AH 2004 Speciation (Sunderland, MA: Sinauer Associates, Inc.)Google Scholar
  9. Crawford AJ 2003 Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences. Mol. Ecol. 12 2525–2540PubMedCrossRefGoogle Scholar
  10. Crawford AJ, Lips KR and Bermingham E 2010 Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc. Natl. Acad. Sci. USA 107 13777–13782Google Scholar
  11. Drummond AJ, Ho SYW, Phillips MJ and Rambaut A 2006 Relaxed phylogenetics and dating with confidence. PLoS Biol. 4 e88Google Scholar
  12. Drummond AJ and Rambaut A 2007 BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7 214Google Scholar
  13. Eaton M, Meyers G, Kolokotronis S-O, Leslie M, Martin A and Amato G 2010 Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conserv. Genet. 11 1389–1404CrossRefGoogle Scholar
  14. Floyd R, Abebe E, Papert A and Blaxter M 2002 Molecular barcodes for soil nematode identification. Mol. Ecol. 11 839–850PubMedCrossRefGoogle Scholar
  15. Frost DR 2009 Amphibian species of the world: An online reference version 5.3 (New York: American Museum of Natural History) http://research.amnh.org/vz/herpetology/amphibia/
  16. González MA, Baraloto C, Engel J, Mori SA, Pétronelli P, Riéra B, Roger A, Thébaud C and Chave J 2009 Identification of Amazonian trees with DNA barcodes. PLoS ONE 4 e7483Google Scholar
  17. Hajibabaei M, deWaard JR, Ivanova NV, Ratnasingham S, Dooh RT, Kirk SL, Mackie PM and Hebert PDN 2005 Critical factors for assembling a high volume of DNA barcodes. Philos. Transac. R. Soc. London Ser. B Biol. Sci. 360 1959–1967Google Scholar
  18. Hebert P, Cywinska A, Ball S and deWaard J 2003a Biological identifications through DNA barcodes. Philos. Transac. R. Soc. London Ser. B Biol. Sci. 270 313–321Google Scholar
  19. Hebert P, Ratnasingham S and deWaard J 2003b Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Philos. Transac. R. Soc. London Ser. B Biol. Sci. 270 S96–S99Google Scholar
  20. Hebert PDN, Stoeckle MY, Zemlak TS and Francis CM 2004 Identification of birds through DNA barcodes. PLoS Biol. 2 e312Google Scholar
  21. Hickerson MJ, Meyer CP and Moritz C 2006 DNA barcoding will often fail to discover new animal species over broad parameter space. System. Biol. 55 729–739CrossRefGoogle Scholar
  22. Hudson RR 1990 Gene genealogies and the coalescent process; in Oxford surveys in evolutionary biology volume 7 (eds) D Futuyma and J Antonovics (Oxford University Press) pp 1–44Google Scholar
  23. Janzen DH, Hallwachs W, Blandin P, Burns JM, Cadiou J-M, Chacon I, Dapkey T, Deans AR, et al. 2009 Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Mol. Ecol. Resour. 9 1–26CrossRefGoogle Scholar
  24. Johns GC and Avise JC 1998 A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochome b gene. Mol. Biol. Evol. 15 1481–1490PubMedCrossRefGoogle Scholar
  25. Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM and Hebert PDN 2007 Comprehensive DNA barcode coverage of North American birds. Mol. Ecol. Notes 7 535–543Google Scholar
  26. Kimura M 1980 A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16 111–120PubMedCrossRefGoogle Scholar
  27. Kress WJ and Erickson DL 2008 DNA barcoding - a windfall for tropical biology? Biotropica 40 405–408CrossRefGoogle Scholar
  28. Kulathinal R and Singh R 2008 The molecular basis of speciation: from patterns to processes, rules to mechanisms. J. Genet. 87 327–338PubMedCrossRefGoogle Scholar
  29. Lampert KP, Rand AS, Mueller UG and Ryan MJ 2003 Fine-scale genetic pattern and evidence for sex-biased dispersal in the túngara frog, Physalaemus pustulosus. Mol. Ecol. 12 3325–3334PubMedCrossRefGoogle Scholar
  30. Lim GS, Balke M and Meier R 2011 Determining species boundaries in a world full of rarity: singletons, species delimitation methods. System. Biol. 61 165–169CrossRefGoogle Scholar
  31. Lohse K 2009 Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). System. Biol. 58 439–442Google Scholar
  32. Lumbsch H and Leavitt S 2011 Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity 50 59–72CrossRefGoogle Scholar
  33. May RM and Harvey PH 2009 Species uncertainties. Science 323 687–687PubMedCrossRefGoogle Scholar
  34. Mayr E 1942 Systematics and the origin of species: From the viewpoint of a zoologist (New York: Columbia University Press)Google Scholar
  35. Meier R, Shiyang K, Vaidya G and Ng P 2006 DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. System. Biol. 55 715–728CrossRefGoogle Scholar
  36. Meyer CP and Paulay G 2005 DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol. 3 e422Google Scholar
  37. Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, Lees DC, Ranaivosolo R, Eggleton P, Barraclough TG and Vogler AP 2009 Accelerated species inventory on Madagascar using coalescent-based models of species delineation. System. Biol. 58 298–311CrossRefGoogle Scholar
  38. Mora C, Tittensor DP, Adl S, Simpson AGB and Worm B 2011 How many species are there on Earth and in the ocean? PLoS Biol. 9 e1001127Google Scholar
  39. Moritz C and Cicero C 2004 DNA barcoding: promise and pitfalls. PLoS Biol. 2 e354Google Scholar
  40. Munch K, Boomsma W, Huelsenbeck JP, Willerslev E and Nielsen R 2008a Statistical assignment of DNA sequences using bayesian phylogenetics. System. Biol. 57 750–757CrossRefGoogle Scholar
  41. Munch K, Boomsma W, Willerslev E and Nielsen R 2008b Fast phylogenetic DNA barcoding. Philos. Transac. R. Soc. London Ser. B Biol. Sci. 363 3997–4002Google Scholar
  42. Neigel J, Domingo A and Stake J 2007 DNA barcoding as a tool for coral reef conservation. Coral Reefs 26 487–499CrossRefGoogle Scholar
  43. Pinto-Sánchez NR, Ibáñez R, Madriñán S, Sanjur OI, Bermingham E and Crawford AJ 2012 The Great American biotic interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Mol. Phylogenet. Evol. 62 954–972PubMedCrossRefGoogle Scholar
  44. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD and Vogler AP 2006 Sequence-based species delimitation for the DNA taxonomy of undescribed insects. System. Biol. 55 595–609CrossRefGoogle Scholar
  45. Puillandre N, Lambert A, Brouillet S and Achaz G 2011 ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21 1864–1877Google Scholar
  46. Rannala B and Yang Z 1996 Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution 43 304–311PubMedCrossRefGoogle Scholar
  47. Reid BN, Le M, McCord WP, Iverson JB, Georges A, Bergmann T, Amato G, Desalle R and Naro-Maciel E 2011 Comparing and combining distance-based and character-based approaches for barcoding turtles. Mol. Ecol. Resour. 11 956–967PubMedCrossRefGoogle Scholar
  48. Robertson JM, Duryea MC and Zamudio KR 2009 Discordant patterns of evolutionary differentiation in two Neotropical treefrogs. Mol. Ecol. 18 1375–1395PubMedCrossRefGoogle Scholar
  49. Ronquist F and Huelsenbeck JP 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 1572–1574PubMedCrossRefGoogle Scholar
  50. Ross HA, Lento GM, Dalebout ML, Goode M, Ewing G, McLaren P, Rodrigo AG, Lavery S and Baker CS 2003 DNA surveillance: Web-based molecular identification of whales, dolphins, and porpoises. J. Hered. 94 111–114PubMedCrossRefGoogle Scholar
  51. Slatkin M 1991 Inbreeding coefficients and coalescence times. Genet. Res. 58 167–175PubMedCrossRefGoogle Scholar
  52. Smith MA, Poyarkov Jr NA and Hebert PDN 2008 CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol. Ecol. Res. 8 235–246CrossRefGoogle Scholar
  53. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG 1997 The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25 4876–4882Google Scholar
  54. Thompson JD, Higgins DG and Gibson TJ 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 4673–4680Google Scholar
  55. Valentini A, Pompanon F and Taberlet P 2008 DNA barcoding for ecologists. Trend. Ecol. Evol. 24 110–117CrossRefGoogle Scholar
  56. Vences M, Thomas M, Bonett RM and Vieites DR 2005a Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos. Transac. R. Soc. London Ser. B Biol. Sci. 360 1859–1868Google Scholar
  57. Vences M, Thomas M, van der Meijden A, Chiari Y and Vieites DR 2005b Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front. Zool. 2 5Google Scholar
  58. Vonesh JR, Mitchell JC, Howell K and Crawford AJ 2009 Rapid assessments of amphibian diversity; in Amphibian ecology and conservation: A handbook of techniques (ed) CK Dodd Jr (Oxford: Oxford University Press) pp 263–280Google Scholar
  59. Will KW and Rubinoff D 2004 Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20 47–55CrossRefGoogle Scholar
  60. Wilson J, Rougerie R, Schonfeld J, Janzen D, Hallwachs W, Hajibabaei M, Kitching I, Haxaire J and Hebert P 2011 When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? An assessment using sphingid moths. BMC Ecol. 11 18Google Scholar
  61. Xia YUN, Gu H-F, Peng RUI, Chen QIN, Zheng Y-C, Murphy RW and Zeng X-M 2012 COI is better than 16S rRNA for DNA barcoding Asiatic salamanders (Amphibia: Caudata: Hynobiidae). Mol. Ecol. Resour. 12 48–56PubMedCrossRefGoogle Scholar
  62. Zhang AB, Muster C, Liang HB, Zhu CD, Crozier R, Wan P, Feng J and Ward RD 2011 A fuzzy-set-theory-based approach to analyse species membership in DNA barcoding. Mol. Ecol. 21 1848–1863Google Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversidad de los AndesBogotáColombia
  2. 2.Smithsonian Tropical Research InstitutePanamáRepublic of Panama

Personalised recommendations