Journal of Biosciences

, Volume 37, Issue 3, pp 457–474 | Cite as

Interaction of nucleic acids with carbon nanotubes and dendrimers

  • Bidisha Nandy
  • Mogurampelly Santosh
  • Prabal K Maiti


Nucleic acid interaction with nanoscale objects like carbon nanotubes (CNTs) and dendrimers is of fundamental interest because of their potential application in CNT separation, gene therapy and antisense therapy. Combining nucleic acids with CNTs and dendrimers also opens the door towards controllable self-assembly to generate various supra-molecular and nano-structures with desired morphologies. The interaction between these nanoscale objects also serve as a model system for studying DNA compaction, which is a fundamental process in chromatin organization. By using fully atomistic simulations, here we report various aspects of the interactions and binding modes of DNA and small interfering RNA (siRNA) with CNTs, graphene and dendrimers. Our results give a microscopic picture and mechanism of the adsorption of single- and double-strand DNA (ssDNA and dsDNA) on CNT and graphene. The nucleic acid–CNT interaction is dominated by the dispersive van der Waals (vdW) interaction. In contrast, the complexation of DNA (both ssDNA and dsDNA) and siRNA with various generations of poly-amido-amine (PAMAM) dendrimers is governed by electrostatic interactions. Our results reveal that both the DNA and siRNA form stable complex with the PAMAM dendrimer at a physiological pH when the dendrimer is positively charged due to the protonation of the primary amines. The size and binding energy of the complex increase with increase in dendrimer generation. We also give a summary of the current status in these fields and discuss future prospects.


Binding and MD simulations carbon nanotube dendrimer graphene nucleic acids van der Waals interaction 



We thank the Department of Biotechnology, India, for financial support.


  1. Bergstrom CT and Antiat R 2005 On RNA interference as template immunity. J. Biosci. 30 295–297PubMedCrossRefGoogle Scholar
  2. Bielinska AU, KukowskaLatallo JF and Baker JR 1997 The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochim. Biophys. Acta - Gene Struc. Exp. 1353 180–190Google Scholar
  3. Bloomfield VA, Crothers DM and Tinoco I (2000) Nucleic acids: structures, properties, and functions (California, University Science Books)Google Scholar
  4. Bosman AW, Janssen HM and Meijer EW 1999 About dendrimers: Structure, physical properties, and applications. Chem. Rev. 99 1665–1688PubMedCrossRefGoogle Scholar
  5. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, et al. 2009 CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 30 1545–1614PubMedCrossRefGoogle Scholar
  6. Calladine CR and Drew HR 1984 A Base-Centered Explanation of the B-to-a Transition in DNA. J. Mol. Biol. 178 773–781PubMedCrossRefGoogle Scholar
  7. Case DA, Darden TA, Cheatham TE, et al. 2006 AMBER9 (San Francisco: University of California)Google Scholar
  8. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS and Geim AK 2009 The electronic properties of graphene. Rev. Modern Phy. 81 109–162Google Scholar
  9. Cheatham TE and Kollman PA 1996 Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J. Mol. Biol. 259 434–444PubMedCrossRefGoogle Scholar
  10. Chou SG, Ribeiro HB, Barros EB, Santos AP, Nezich D, Samsonidze GG, Fantini C, Pimenta MA, et al. 2004 Optical characterization of DNA-wrapped carbon nanotube hybrids. Chem. Phy. Lett. 397 296–301CrossRefGoogle Scholar
  11. Dickerson RE 1992 DNA-Structure from a to Z. Methods Enzymol. 211 67–111Google Scholar
  12. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, et al. 2003 A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24 1999–2012PubMedCrossRefGoogle Scholar
  13. Dufes C, Uchegbu IF and Schatzlein AG 2005 Dendrimers in gene delivery. Adv. Drug Delivery Rev. 57 2177–2202Google Scholar
  14. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW and Whang EE 2003 RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochem. Biophys. Res. Commun. 311 786–792PubMedCrossRefGoogle Scholar
  15. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T 2001a Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411 494–498PubMedCrossRefGoogle Scholar
  16. Elbashir SM, Lendeckel W and Tuschl T 2001b RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15 188–200Google Scholar
  17. Fant K, Esbjorner EK, Lincoln P and Norden B 2008 DNA condensation by PAMAM dendrimers: Self-assembly characteristics and effect on transcription. Biochemistry 47 1732–1740PubMedCrossRefGoogle Scholar
  18. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE and Mello CC 1998 Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 806–811PubMedCrossRefGoogle Scholar
  19. Franklin RE and Gosling RG 1953 Molecular configuration in sodium thymonucleate. Nature 171 740–741PubMedCrossRefGoogle Scholar
  20. Frechet JMJ 1994 Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263 1710–1715PubMedCrossRefGoogle Scholar
  21. Gao HJ, Kong Y, Cui DX and Ozkan CS 2003 Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3 471–473Google Scholar
  22. Garaj S, Hubbard W, Reina A, Kong J, Branton D and Golovchenko JA 2010 Graphene as a subnanometre trans-electrode membrane. Nature 467 190–193PubMedCrossRefGoogle Scholar
  23. Geim AK and Novoselov KS 2007 The rise of graphene. Nat. Mater. 6 183–191PubMedCrossRefGoogle Scholar
  24. Grayson SM and Frechet JMJ 2001 Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101 3819–3867PubMedCrossRefGoogle Scholar
  25. Grayson ACR, Doody AM and Putnam D 2006 Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharmaceut. Res. 23 1868–1876CrossRefGoogle Scholar
  26. Haensler J and Szoka FC 1993 Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. 4 372–379Google Scholar
  27. Hannon GJ 2002 RNA interference. Nature 418 244–251PubMedCrossRefGoogle Scholar
  28. Hannon GJ and Rossi JJ 2004 Unlocking the potential of the human genome with RNA interference. Nature 431 371–378PubMedCrossRefGoogle Scholar
  29. Harries D, May S, Gelbart WM and Ben-Shaul A 1998 Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. Biophys. J. 75 159–173PubMedCrossRefGoogle Scholar
  30. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB and Strano MS 2006 Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311 508–511PubMedCrossRefGoogle Scholar
  31. Herskovits T and Singer SJ 1961 Nonaqueous solutions of DNA - denaturation in methanol and ethanol. Arch. Biochem. Biophy. 94 99–114CrossRefGoogle Scholar
  32. Ivanov VI, Minchenkova LE, Minyat EE, Frank-Kamenetskii MD and Schyolkina AK 1974 The B to Α transition of DNA in solution. J. Mol. Biol. 87 817–833PubMedCrossRefGoogle Scholar
  33. Jacobomolina A, Ding JP, Nanni RG, Clark AD, Lu XD, Tantillo C, Williams RL, Kamer G, et al. 1993 Crystal-structure of human-immunodeficiency-virus type-1 reverse-transcriptase complexed with double-stranded DNA at 3.0 angstrom resolution shows bent DNA. Proc. Nat. Acad. Sci. USA 90 6320–6324Google Scholar
  34. Jacque JM, Triques K and Stevenson M 2002 Modulation of HIV-1 replication by RNA interference. Nature 418 435–438PubMedCrossRefGoogle Scholar
  35. Jayaram B, Sprous D, Young MA and Beveridge DL 1998 Free energy analysis of the conformational preferences of A and B forms of DNA in solution. J. Am. Chem. Soc. 120 10629–10633CrossRefGoogle Scholar
  36. Johnson RR, Johnson ATC and Klein ML 2008 Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett. 8 69–75Google Scholar
  37. Jones S, van Heyningen P, Berman HM and Thornton JM 1999 Protein-DNA interactions: A structural analysis. J. Mol. Biol. 287 877–896PubMedCrossRefGoogle Scholar
  38. Jovin TM, Soumpasis DM and McIntosh LP 1987 The Transition between B-DNA and Z-DNA. Annu. Rev. Phys. Chem. 38 521–560CrossRefGoogle Scholar
  39. Kiefer JR, Mao C, Braman JC and Beese LS 1998 Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391 304–307PubMedCrossRefGoogle Scholar
  40. Kim DH and Rossi JJ 2007 Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 8 173–184PubMedCrossRefGoogle Scholar
  41. Klug A 2004 The discovery of the DNA double helix. J. Mol. Biol. 335 3–26PubMedCrossRefGoogle Scholar
  42. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, et al. 2000 Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 33 889–897PubMedCrossRefGoogle Scholar
  43. KukowskaLatallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA and Baker JR 1996 Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Nat. Acad. Sci. USA 93 4897–4902Google Scholar
  44. Kurreck J 2009 RNA Interference: From basic research to therapeutic applications. Angewandte Chemie-Intl. Ed. 48 1378–1398Google Scholar
  45. Larin S, Lyulin S, Lyulin A and Darinskii A 2009a Computer Simulations of Interpolyelectrolyte Complexes Formed by Star-like Polymers and Linear Polyelectrolytes. Macromolecular Symposia 278 40–47CrossRefGoogle Scholar
  46. Larin SV, Lyulin SV, Lyulin AV and Darinskii AA 2009b Charge inversion of dendrimers in complexes with linear polyelectrolytes in the solutions with low pH. Polymer Sci. Ser. A 51 459–468Google Scholar
  47. Larin SV, Darinskii AA, Lyulin AV and Lyulin SV 2010 Linker formation in an overcharged complex of two dendrimers and linear polyelectrolyte. J. Phys. Chem. B 114 2910–2919Google Scholar
  48. Lee NS, Dohjima T, Bauer G, Li HT, Li MJ, Ehsani A, Salvaterra P and Rossi J 2002 Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20 500–505PubMedGoogle Scholar
  49. Lin ST, Blanco M and Goddard WA 2003 The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids. J. Chem. Phys. 119 11792–11805CrossRefGoogle Scholar
  50. Lin ST, Maiti PK and Goddard WA 2010 Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations. J. Phys. Chem. B 114 8191Google Scholar
  51. Liu Z, Winters M, Holodniy M and Dai HJ 2007 siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chemie-Intl. Ed. 46 2023–2027Google Scholar
  52. Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY and Dai HJ 2008 Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68 6652–6660Google Scholar
  53. Liu Z, Tabakman S, Welsher K and Dai HJ 2009 Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2 85–120Google Scholar
  54. Livolant F 1991 Ordered phases of DNA in vivo and in vitro. Physica A 176 117–137CrossRefGoogle Scholar
  55. Lu XJ, Shakked Z and Olson WK 2000 A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 300 819–840PubMedCrossRefGoogle Scholar
  56. Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL and Ke PC 2004 RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 4 2473–2477Google Scholar
  57. Lyulin SV, Darinskii AA and Lyulin AV 2005 Computer simulation of complexes of dendrimers with linear polyelectrolytes. Macromolecules 38 3990–3998CrossRefGoogle Scholar
  58. Lyulin SV, Vattulainen I and Gurtovenko AA 2008 Complexes comprised of charged dendrimers, linear polyelectrolytes, and counterions: Insight through coarse-grained molecular dynamics simulations. Macromolecules 41 4961–4968CrossRefGoogle Scholar
  59. Maiti PK and Bagchi B 2006 Structure and dynamics of DNA-dendrimer complexation: Role of counterions, water, and base pair sequence. Nano Lett. 6 2478–2485Google Scholar
  60. Maiti PK and Bagchi B 2009 Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer. J. Chem. Phys. 131 214901Google Scholar
  61. Maiti PK, Cagin T, Wang GF and Goddard WA 2004 Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules 37 6236–6254CrossRefGoogle Scholar
  62. Maiti PK, Li YY, Cagin T and Goddard WA 2009 Structure of polyamidoamide dendrimers up to limiting generations: A mesoscale description. J. Chem. Phys. 130 144902Google Scholar
  63. Meister G and Tuschl T 2004 Mechanisms of gene silencing by double-stranded RNA. Nature 431 343–349PubMedCrossRefGoogle Scholar
  64. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, et al. 2010 DNA Translocation through Graphene Nanopores. Nano Lett. 10 2915–2921Google Scholar
  65. Miller JL and Kollman PA 1997 Observation of an A-DNA to B-DNA transition in a nonhelical nucleic acid hairpin molecule using molecular dynamics. Biophys. J. 73 2702–2710PubMedCrossRefGoogle Scholar
  66. Mintzer MA and Simanek EE 2009 Nonviral Vectors for gene delivery. Chem. Rev. 109 259–302PubMedCrossRefGoogle Scholar
  67. Nandy B and Maiti PK 2011 DNA compaction by a dendrimer. J. Phys. Chem. B 115 217–230Google Scholar
  68. Napoli C, Lemieux C and Jorgensen R 1990 Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2 279–289PubMedGoogle Scholar
  69. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV and Firsov AA 2004 Electric field effect in atomically thin carbon films. Science 306 666–669PubMedCrossRefGoogle Scholar
  70. Ottaviani MF, Furini F, Casini A, Turro NJ, Jockusch S, Tomalia DA and Messori L 2000 Formation of supramolecular structures between DNA and starburst dendrimers studied by EPR, CD, UV, and melting profiles. Macromolecules 33 7842–7851CrossRefGoogle Scholar
  71. Pavan GM, Danani A, Pricl S and Smith DK 2009 Modeling the multivalent recognition between dendritic molecules and DNA: Understanding how ligand "sacrifice" and screening can enhance binding. J. Am. Chem. Soc. 131 9686–9694PubMedCrossRefGoogle Scholar
  72. Pavan GM, Albertazzi L and Danani A 2010 Ability to adapt: different generations of PAMAM dendrimers show different behaviors in binding siRNA. J. Phys. Chem. B 114 2667–2675Google Scholar
  73. Reynolds JA and Hough JM 1957 Formulae for dielectric constant of mixtures. Proc. Phys. Soc. London Sec. B 70 769–775Google Scholar
  74. Rich A and Zhang SG 2003 Z-DNA: the long road to biological function. Nat. Rev. Genet. 4 566–572PubMedCrossRefGoogle Scholar
  75. Saenger W (1984) Principles of nucleic acid structure (New York: Springer-Verlag)CrossRefGoogle Scholar
  76. Santosh M and Maiti PK 2009 Force induced DNA melting. J. Phys. - Condensed Matter 21 034113Google Scholar
  77. Santosh M and Maiti PK 2011 Structural rigidity of paranemic crossover and juxtapose DNA nanostructures. Biophys. J. 101 1393–1402PubMedCrossRefGoogle Scholar
  78. Santosh M, Panigrahi S, Bhattacharyya D, Sood AK and Maiti PK 2012 Unzipping and binding of small interfering RNA with single walled Carbon Nanotube: a platform for small interfering RNA delivery. J. Chem. Phys. 136 065106Google Scholar
  79. Scherrenberg R, Coussens B, van Vliet P, Edouard G, Brackman J, de Brabander E and Mortensen K 1998 The molecular characteristics of poly(propyleneimine) dendrimers as studied with small-angle neutron scattering, viscosimetry, and molecular dynamics. Macromolecules 31 456–461CrossRefGoogle Scholar
  80. Schiessel H 2003 The physics of chromatin. J. Phys. - Condensed Matter 15 R699-R774Google Scholar
  81. Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK and Dekker C 2010 DNA Translocation through graphene nanopores. Nano Lett. 10 3163–3167Google Scholar
  82. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, et al. 2004 Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432 173–178PubMedCrossRefGoogle Scholar
  83. Sponer J, Jurecka P and Hobza P 2004 Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J. Am. Chem. Soc. 126 10142–10151PubMedCrossRefGoogle Scholar
  84. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST and Ruoff RS 2006 Graphene-based composite materials. Nature 442 282–286PubMedCrossRefGoogle Scholar
  85. Tsubouchi A, Sakakura J, Yagi R, Mazaki Y, Schaefer E, Yano H and Sabe H 2002 Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. J. Cell Biol. 159 673–683Google Scholar
  86. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F and Aigner A 2005 RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12 461–466Google Scholar
  87. Vangunsteren WF and Berendsen HJC 1987 GROMOS-87 Manual.Google Scholar
  88. Vasumathi V and Maiti PK 2010 Complexation of siRNA with dendrimer: A molecular modeling approach. Macromolecules 43 8264–8274CrossRefGoogle Scholar
  89. Watson JD and Crick FHC 1953 Molecular Structure of nucleic acids - a structure for deoxyribose nucleic acid. Nature 171 737–738PubMedCrossRefGoogle Scholar
  90. Welch P and Muthukumar M 2000 Dendrimer-polyelectrolyte complexation: A model guest-host system. Macromolecules 33 6159–6167CrossRefGoogle Scholar
  91. Wilkins MHF, Stokes AR and Wilson HR 1953 Molecular Structure of Deoxypentose Nucleic Acids. Nature 171 738–740PubMedCrossRefGoogle Scholar
  92. Zamore PD and Aronin N 2003 siRNAs knock down hepatitis. Nat. Med. 9 266–267PubMedCrossRefGoogle Scholar
  93. Zhang YB, Tan YW, Stormer HL and Kim P 2005 Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438 201–204PubMedCrossRefGoogle Scholar
  94. Zhao X and Johnson JK 2007 Simulation of adsorption of DNA on carbon nanotubes. J. Am. Chem. Soc. 129 10438–10445PubMedCrossRefGoogle Scholar
  95. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE and Tassi NG 2003a DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2 338–342PubMedCrossRefGoogle Scholar
  96. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, et al. 2003b Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302 1545–1548PubMedCrossRefGoogle Scholar
  97. Zimmerman SB and Pheiffer BH 1979 Direct demonstration that the ethanol-induced transition of DNA is between the a-forms and B-forms - X-ray-diffraction study. J. Mol. Biol. 135 1023–1027PubMedCrossRefGoogle Scholar
  98. Zimmerman SC, Zeng FW, Reichert DEC and Kolotuchin SV 1996 Self-assembling dendrimers. Science 271 1095–1098PubMedCrossRefGoogle Scholar
  99. Zinchenko AA and Chen N 2006 Compaction of DNA on nanoscale three-dimensional templates. J. Phys. - Condensed Matter 18 R453-R480Google Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  • Bidisha Nandy
    • 1
  • Mogurampelly Santosh
    • 1
  • Prabal K Maiti
    • 1
  1. 1.Centre for Condensed Matter Theory, Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations