Journal of Biosciences

, Volume 36, Issue 2, pp 377–382 | Cite as

Marmorkrebs: Natural crayfish clone as emerging model for various biological disciplines

Mini-review

Abstract

 

Keywords

Cancer development genotype-to-phenotype mapping marbled crayfish model organism stem cells 

References

  1. Alwes F and Scholtz G 2006 Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev. Genes Evol. 216 169–184Google Scholar
  2. Chucholl C and Pfeiffer M 2010 First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817). Aquatic Invasions 5 405–412CrossRefGoogle Scholar
  3. Fabritius-Vilpoux K, Bisch-Knaden S and Harzsch S 2008 Engrailed-like immunoreactivity in the embryonic ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Invertebr. Neurosci. 8 177–197CrossRefGoogle Scholar
  4. Farca Luna AJ, Hurtado-Zavala JI, Reischig T and Heinrich R 2009 Circadian regulation of agonistic behavior in groups of parthenogenetic marbled crayfish, Procambarus sp. J. Biol. Rhythms 24 64–72Google Scholar
  5. Farca Luna AJ, Heinrich R and Reischig T 2010 The circadian biology of the marbled crayfish. Front. Biosci. E2 1414–1431CrossRefGoogle Scholar
  6. Faulkes Z 2010 The spread of the parthenogenetic marbled crayfish, Marmorkrebs (Procambarus sp.), in the North American pet trade. Aquatic Invasions 5 447–450Google Scholar
  7. Feria TP and Faulkes Z 2011 Forecasting the distribution of Marmorkrebs, a parthenogenetic crayfish with high invasive potential, in Madagascar, Europe, and North America. Aquatic Invasions 6 55–67CrossRefGoogle Scholar
  8. Gherardi F, Souty-Grosset C, Vogt G, Diéguez-Uribeondo J and Crandall KA 2010 Infraorder Astacidea Latreille, 1802 pp: The freshwater crayfish; in Treatise on zoology - anatomy, taxonomy, biology – the Crustacea. Volume 9, part A: Eucarida: Euphausiacea, Amphionidacea, and Decapoda (partim) (eds) FR Schram, JC von Vaupel Klein, J Forest and M Charmantier-Daures (Leiden: Brill) pp. 269–423Google Scholar
  9. Jimenez SA and Faulkes Z 2010 Establishment and care of a colony of parthenogenetic marbled crayfish, Marmorkrebs. Invertebr. Rearing 1 10–18Google Scholar
  10. Jirikowski G, Kreissl S, Richter S and Wolff C 2010 Muscle development in the marbled crayfish - insights from an emerging model organism (Crustacea, Malacostraca, Decapoda). Dev. Genes Evol. 220 89–105Google Scholar
  11. Jones JPG, Rasamy JR, Harvey A, Toon A, Oidtmann B, Randrianarison MH, Raminosoa N and Ravoahangimalala OR 2009 The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol. Invasions 11 1475–1482Google Scholar
  12. Kawai T, Scholtz G, Morioka S, Ramanamandimby F, Lukhaup C and Hanamura Y 2009 Parthenogenetic alien crayfish (Decapoda: Cambaridae) spreading in Madagascar. J. Crust. Biol. 29 562–567CrossRefGoogle Scholar
  13. Martin P, Kohlmann K and Scholtz G 2007 The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwiss. 94 843–846PubMedCrossRefGoogle Scholar
  14. Martin P, Dorn NJ, Kawai T, van der Heiden C and Scholtz G 2010a The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib. Zool. 79 107–118Google Scholar
  15. Martin P, Shen H, Füller G and Scholtz G 2010b The first record of the parthenogenetic Marmorkrebs (Decapoda, Astacida, Cambaridae) in the wild in Saxony (Germany) raises the question of its actual threat to European freshwater ecosystems. Aquatic Invasions 5 397–403CrossRefGoogle Scholar
  16. Marzano FN, Scalici M, Chiesa S, Gherardi F, Piccinini A and Gibertini G 2009 The first record of the marbled crayfish adds further threats to fresh waters in Italy. Aquatic Invasions 4 401–404CrossRefGoogle Scholar
  17. Pawlos D, Korzelecka-Orkisz A, Formicki K, Durkowski T and Winnicki A 2010 Egg volume and membrane resistance during embryogenesis of the marbled crayfish (Procambarus sp.). Freshwater Crayfish 17 239–243Google Scholar
  18. Polanska MA, Yasuda A and Harzsch S 2007 Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish. Cell Tissue Res. 330 331–344Google Scholar
  19. Rieger V and Harzsch S 2008 Embryonic development of the histaminergic system in the ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Tissue Cell 40, 113–126PubMedCrossRefGoogle Scholar
  20. Rubach M, Crum S and Van den Brink P 2011 Variability in the dynamics of mortality and immobility responses of freshwater arthropods exposed to chlorpyrifos. Arch. Environ. Contam. Toxicol. 60 708–721PubMedCrossRefGoogle Scholar
  21. Schiewek R, Wirtz M, Thiemann M, Plitt K, Vogt G and Schmitz OJ 2007 Determination of the DNA methylation level of the marbled crayfish: an increase in sample throughput by an optimised sample preparation. J. Chromatogr. B. 850 548–552CrossRefGoogle Scholar
  22. Scholtz G 2002 Phylogeny and evolution; in Biology of freshwater crayfish (ed) DM Holdich (Oxford: Blackwell) pp. 30–52Google Scholar
  23. Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F and Vogt G 2003 Parthenogenesis in an outsider crayfish. Nature (London) 421 806Google Scholar
  24. Seitz R, Vilpoux K, Hopp U, Harzsch S and Maier G 2005 Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J. Exp. Zool. A 303 393–405Google Scholar
  25. Sintoni S, Fabritius-Vilpoux K and Harzsch S 2007 The Engrailed-expressing secondary head spots in the embryonic crayfish brain: examples for a group of homologous neurons in Crustacea and Hexapoda? Dev. Genes Evol. 217 791–799Google Scholar
  26. Vilpoux K, Sandeman R and Harzsch S 2006 Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev. Genes Evol. 216 209–223Google Scholar
  27. Vogt G 2007 Exposure of the eggs to 17α-methyl testosterone reduced hatching success and growth and elicited teratogenic effects in postembryonic life stages of crayfish. Aquat. Toxicol. 85 291–296PubMedCrossRefGoogle Scholar
  28. Vogt G 2008a The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. J. Zool. 276 1–13CrossRefGoogle Scholar
  29. Vogt G 2008b Investigation of hatching and early post-embryonic life of freshwater crayfish by in vitro culture, behavioral analysis, and light and electron microscopy. J. Morphol. 269 790–811PubMedCrossRefGoogle Scholar
  30. Vogt G 2008c How to minimize formation and growth of tumours: potential benefits of decapod crustaceans for cancer research. Int. J. Cancer 123 2727–2734Google Scholar
  31. Vogt G 2010 Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontol. 11 643–669CrossRefGoogle Scholar
  32. Vogt G and Tolley L 2004 Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J. Morphol. 262 566–582PubMedCrossRefGoogle Scholar
  33. Vogt G, Tolley L and Scholtz G 2004 Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J. Morphol. 261 286–311PubMedCrossRefGoogle Scholar
  34. Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ and Schubart CD 2008 Production of different phenotypes from the same genotype in the same environment by developmental variation. J. Exp. Biol. 211 510–523PubMedCrossRefGoogle Scholar
  35. Vogt G, Wirkner CS and Richter S 2009 Symmetry variation in the heart-descending artery system of the parthenogenetic marbled crayfish. J. Morphol. 270 221–226PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany

Personalised recommendations