Advertisement

Journal of Biosciences

, Volume 35, Issue 2, pp 315–319 | Cite as

Nuclear reprogramming and epigenetic rejuvenation

  • Prim B. SinghEmail author
  • Fred Zacouto
Mini-Review

Keywords

Epigenetics iPS cells rejuvenation reprogramming SCNT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aziz A, Soucie E, Sarrazin S and Sieweke M H 2009 MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages; Science 326 867–871CrossRefPubMedGoogle Scholar
  2. Buttitta L A, Katzaroff A J, Perez C L, de la Cruz A and Edgar B A 2007 A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila; Dev. Cell 12 631–643CrossRefPubMedGoogle Scholar
  3. Buttitta L A and Edgar B A 2007 Mechanisms controlling cell cycle exit upon terminal differentiation; Curr. Opin. Cell Biol. 19 697–704CrossRefPubMedGoogle Scholar
  4. Chan E M, Ratanasirintrawoot S, Park I H, Manos P D, Loh Y H, Huo H, Miller J D, Hartung O, et al. 2009 Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells; Nat. Biotechnol. 27 1033–1037CrossRefPubMedGoogle Scholar
  5. Cibelli J 2009 The human egg is back; Cell Stem Cell 5 345–346CrossRefPubMedGoogle Scholar
  6. Fanti L and Pimpinelli S 2008 HP1: a functionally multifaceted protein; Curr. Opin. Genet. Dev. 18 169–174CrossRefPubMedGoogle Scholar
  7. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H and Bergman Y 2006 G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis; Nat. Cell Biol. 8 188–194CrossRefPubMedGoogle Scholar
  8. Hanna J, Markoulaki S, Mitalipova M, Cheng A W, Cassady J P, Staerk J, Carey B W, Lengner C J, et al. 2009 Metastable pluripotent states in NOD-mouse-derived ESCs; Cell Stem Cell 4 513–524CrossRefPubMedGoogle Scholar
  9. Hanna J, Saha K, Pando B, van Zon J, Lengner C J, Creyghton M P, van Oudenaarden A and Jaenisch R 2009 Direct cell reprogramming is a stochastic process amenable to acceleration; Nature (London) 462 595–601CrossRefGoogle Scholar
  10. Gurdon J B and Byrne J A 2003 The first half-century of nuclear transplantation; Proc. Natl. Acad. Sci. USA 100 8048–8052CrossRefPubMedGoogle Scholar
  11. Hochedlinger K and Jaenisch R 2002 Monoclonal mice generated by nuclear transfer from mature B and T donor cells; Nature (London) 415 1035–1038CrossRefGoogle Scholar
  12. Klappacher G W, Lunyak V V, Sykes D B, Sawka-Verhelle D, Sage J, Brard G, Ngo S D, Gangadharan D, et al. 2002 An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation; Cell 109 169–180CrossRefPubMedGoogle Scholar
  13. Liu L, Bailey S M, Okuka M, Muñoz P, Li C, Zhou L, Wu C, Czerwiec E, et al. 2009 Telomere lengthening early in development; Nat. Cell Biol. 9 1436–1441CrossRefGoogle Scholar
  14. Marion R M, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M and Blasco M A 2009 Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells; Cell Stem Cell 4 141–154CrossRefPubMedGoogle Scholar
  15. Mizutani E, Ono T, Li C, Maki-Suetsugu R and Wakayama T 2008 Propagation of senescent mice using nuclear transfer embryonic stem cell lines; Genesis. 46 478–83CrossRefPubMedGoogle Scholar
  16. Narita M, Nũnez S, Heard E, Narita M, Lin A W, Hearn S A, Spector D L, Hannon G J, et al. 2003 Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence; Cell 113 703–716CrossRefPubMedGoogle Scholar
  17. Nielsen S J, Schneider R, Bauer U M, Bannister A J, Morrison A, O’Carroll D, Firestein R, Cleary M, et al. 2001 Rb targets histone H3 methylation and HP1 to promoters; Nature (London) 412 561–565CrossRefGoogle Scholar
  18. Panteleeva I, Boutillier S, See V, Spiller D G, Rouaux C, Almouzni G, Bailly D, Maison C, et al. 2007 HP1alpha guides neuronal fate by timing E2F-targeted genes silencing during terminal differentiation; EMBO J. 26 3616–3628CrossRefPubMedGoogle Scholar
  19. Singh P B 2000 Understanding nuclear reprogramming (Edinburgh: Roslin Institute year book. Roslin Institute press) pp 53–58Google Scholar
  20. Surani M A and McLaren A 2006 Stem cells: a new route to rejuvenation; Nature (London) 443 284–285CrossRefGoogle Scholar
  21. Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, Li Y, Ramsey C, et al. 2009 Mitochondrial gene replacement in primate offspring and embryonic stem cells; Nature (London) 461 367–372CrossRefGoogle Scholar
  22. Takahashi K and Yamanaka S 2006 Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors; Cell 126 663–676CrossRefPubMedGoogle Scholar
  23. Taylor D A 2009 From stem cells and cadaveric matrix to engineered organs; Curr. Opin. Biotechnol. 20 598–605CrossRefPubMedGoogle Scholar
  24. Wilmut I, Schnieke A E, McWhir J, Kind A J and Campbell K H 1997 Viable offspring derived from fetal and adult mammalian cells; Nature (London) 385 810–813CrossRefGoogle Scholar
  25. Zhang R and Adams P D 2007 Heterochromatin and its relationship to cell senescence and cancer therapy; Cell Cycle 6 784–789CrossRefPubMedGoogle Scholar
  26. Zhang R, Chen W and Adams P D 2007 Molecular dissection of formation of senescence-associated heterochromatin foci; Mol. Cell Biol. 27 2343–2358CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  1. 1.Division of Immunoepigenetics, Department of Immunology and Cell BiologyResearch Center BorstelBorstelGermany
  2. 2.Savita Laboratory of Fundamental BiologyParisFrance

Personalised recommendations