Journal of Biosciences

, 34:523 | Cite as

Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro

  • Maithili P. Dalvi
  • Malati R. Umrani
  • Mugdha V. Joglekar
  • Anandwardhan A. Hardikar
Article

Abstract

Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in diabetes. The phenotypic plasticity exhibited by pancreatic progenitors during reversible epithelial-to-mesenchymal transition (EMT) and possible role of microRNAs in regulation of this process is also presented herein.

Keywords

Differentiation EMT pancreas plasticity progenitor 

References

  1. Atouf F, Park C H, Pechhold K, Ta M, Choi Y and Lumelsky N L 2007 No evidence for mouse pancreatic beta-cell epithelialmesenchymal transition in vitro; Diabetes 56 699–702CrossRefPubMedGoogle Scholar
  2. Beattie G M, Itkin-Ansari P, Cirulli V, Leibowitz G, Lopez A D, Bossie S, Mally M I, Levine F and Hayek A 1999 Sustained proliferation of PDX-1+ cells derived from human islets; Diabetes 48 1013–1019CrossRefPubMedGoogle Scholar
  3. Bolos V, Peinado H, Perez-Moreno M A, Fraga M F, Esteller M and Cano A 2003 The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors; J. Cell Sci. 116 499–511CrossRefPubMedGoogle Scholar
  4. Bonner-Weir S and Weir G C 2005 New sources of pancreatic betacells; Nat. Biotechnol. 23 857–861CrossRefPubMedGoogle Scholar
  5. Bonner J T 1971 Aggregation and differentiation in the cellular slime molds; Annu. Rev. Microbiol. 25 75–92CrossRefPubMedGoogle Scholar
  6. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S and Brabletz T 2008. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells; EMBO Rep. 9 582–589CrossRefPubMedGoogle Scholar
  7. Cano A, Perez-Moreno M A, Rodrigo I, Locascio A, Blanco M J, del Barrio M G, Portillo F and Nieto M A 2000 The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression; Nat. Cell. Biol. 2 76–83CrossRefPubMedGoogle Scholar
  8. Chase L G, Ulloa-Montoya F, Kidder B L, and Verfaillie C M 2007 Islet-derived fi broblast-like cells are not derived via epithelialmesenchymal transition from Pdx-1 or insulin-positive cells; Diabetes 56 3–7CrossRefPubMedGoogle Scholar
  9. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D and van Roy F 2001 The two-handed E box binding zinc fi nger protein SIP1 downregulates E-cadherin and induces invasion; Mol. Cell 7 1267–1278CrossRefPubMedGoogle Scholar
  10. D’Amour K A, Bang A G, Eliazer S, Kelly, O G, Agulnick A D, Smart N G, Moorman M A, Kroon E, Carpenter M K and Baetge E E 2006 Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells; Nat. Biotechnol. 24 1392–1401CrossRefPubMedGoogle Scholar
  11. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H and Foisner R 2005 DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells; Oncogene 24 2375–2385CrossRefPubMedGoogle Scholar
  12. Gallo R, Gambelli F, Gava B, Sasdelli F, Tellone V, Masini M, Marchetti P, Dotta F and Sorrentino V 2007 Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets; Cell Death Differ. 14 1860–1871CrossRefPubMedGoogle Scholar
  13. Gershengorn M C, Hardikar A A, Wei C, Geras-Raaka E, Marcus-Samuels B and Raaka B M 2004 Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells; Science 306 2261–2264CrossRefPubMedGoogle Scholar
  14. Gregory P A, Bert A G, Paterson E L, Barry S C, Tsykin A, Farshid G, Vadas M A, Khew-Goodall Y and Goodall G J 2008 The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1; Nat. Cell Biol. 10 593–601CrossRefPubMedGoogle Scholar
  15. Hardikar A A, Marcus-Samuels B, Geras-Raaka E, Raaka B M, and Gershengorn M C 2003 Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates; Proc. Natl. Acad. Sci. USA 100 7117–7122CrossRefPubMedGoogle Scholar
  16. Joglekar M, Joglekar V, Joglekar S and Hardikar A 2009 Human fetal pancreatic insulin-producing cells proliferate in vitro; J. Endocrinol. 201 27–36CrossRefPubMedGoogle Scholar
  17. Kayali A G, Flores L E, Lopez A D, Kutlu B, Baetge E, Kitamura R, Hao E, Beattie G M and Hayek A 2007 Limited capacity of human adult islets expanded in vitro to redifferentiate into insulin-producing beta-cells; Diabetes 56 703–708CrossRefPubMedGoogle Scholar
  18. Kong W, Yang H, He L, Zhao J J, Coppola D, Dalton W S and Cheng J Q 2008 MicroRNA-155 Is regulated by transforming growth factor ν/smad pathway and contributes to epithelial cell plasticity by targeting RhoA; Mol. Cell Biol. 28 6773–6784CrossRefPubMedGoogle Scholar
  19. Korpal M, Lee E S, Hu G and Kang Y 2008 The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2; J. Biol. Chem. 283 14910–14914CrossRefPubMedGoogle Scholar
  20. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R and McKay R 2001 Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets; Science 292 1389–1394CrossRefPubMedGoogle Scholar
  21. Martin G R 1980 Teratocarcinomas and mammalian embryogenesis; Science 209 768–776CrossRefPubMedGoogle Scholar
  22. Mato J M, Krens F A, van Haastert P J and Konijn T M 1977 Unified control of chemotaxis and cAMP mediated cGMP accumulation by cAMP in Dictyostelium discoideum; Biochem. Biophys. Res. Commun. 77 399–402CrossRefPubMedGoogle Scholar
  23. Moriscot C, de Fraipont F, Richard M J, Marchand M, Savatier P, Bosco D, Favrot M and Benhamou P Y 2005 Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro; Stem Cells 23 594–603CrossRefPubMedGoogle Scholar
  24. Morton R A, Geras-Raaka E, Wilson L M, Raaka B M and Gershengorn M C 2007 Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells; Mol. Cell Endocrinol. 270 87–93CrossRefPubMedGoogle Scholar
  25. Nanjundiah V 1998 Cyclic AMP oscillations in Dictyostelium discoideum: models and observations; Biophys. Chem. 72 1–8CrossRefPubMedGoogle Scholar
  26. Noguchi H 2001 Stem cells for treatment of diabetes; Endocrinol. J. 54 7–16Google Scholar
  27. Park S M, Gaur A B, Lengyel E and Peter M E 2008 The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2; Genes Dev. 22 894–907CrossRefPubMedGoogle Scholar
  28. Perez-Moreno M A, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto M A and Cano A 2001 A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions; J. Biol. Chem. 276 27424–27431CrossRefPubMedGoogle Scholar
  29. Robertson S M, Kennedy M, Shannon J M and Keller G 2000 A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1; Development 127 2447–2459PubMedGoogle Scholar
  30. Russ H A, Bar Y, Ravassard P and Efrat S 2008 In vitro proliferation of cells derived from adult human beta-cells revealed by celllineage tracing; Diabetes 57 1575–1583CrossRefPubMedGoogle Scholar
  31. Shapiro A M, Lakey J R, Paty B W, Senior P A, Bigam D L, and Ryan E A 2005 Strategic opportunities in clinical islet transplantation. Transplantation 79 1304–1307CrossRefPubMedGoogle Scholar
  32. Shapiro A M, Ricordi C, Hering B J, Auchincloss H, Lindblad R, Robertson R P, Secchi A, Brendel M D, Berney T, Brennan D C, Cagliero E, Alejandro R, Ryan E A, DiMercurio B, Morel P, Polonsky, K S, Reems J A, Bretzel R G, Bertuzzi F, Froud T, Kandaswamy R, Sutherland D E, Eisenbarth G, Segal M, Preiksaitis J, Korbutt G S, Barton F B, Viviano L, Seyfert-Margolis V, Bluestone J and Lakey J R 2006 International trial of the Edmonton protocol for islet transplantation; N. Engl. J. Med. 355 1318–1330CrossRefPubMedGoogle Scholar
  33. Soria B, Bedoya F J, Tejedo J R, Hmadcha A, Ruiz-Salmeron R, Lim S and Martin F 2008 Cell therapy for diabetes mellitus: an opportunity for stem cells?; Cells Tissues Organs 188 70–77CrossRefPubMedGoogle Scholar
  34. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B and Zulewski H 2006 Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells; Biochem. Biophys. Res. Commun. 341 1135–1140CrossRefPubMedGoogle Scholar
  35. van Haastert P J 1985 cAMP activates adenylate and guanylate cyclase of Dictyostelium discoideum cells by binding to different classes of cell-surface receptors. A study with extracellular Ca2+; Biochim. Biophys. Acta 846 324–333CrossRefPubMedGoogle Scholar
  36. Weinberg N, Ouziel-Yahalom L, Knoller S, Efrat S and Dor Y 2007 Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic beta-cells; Diabetes 56 1299–1304CrossRefPubMedGoogle Scholar
  37. Yang J, Mani S A, Donaher J L, Ramaswamy S, Itzykson R A, Come C, Savagner P, Gitelman I, Richardson A and Weinberg R A 2004 Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis; Cell 117 927–939CrossRefPubMedGoogle Scholar
  38. Zhang, L, Hong, T P, Hu, J, Liu, Y N, Wu, Y H, and Li, L S 2005 Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identical to mesenchymal stem cells; World J. Gastroenterol. 11 2906–2911PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  • Maithili P. Dalvi
    • 1
  • Malati R. Umrani
    • 1
  • Mugdha V. Joglekar
    • 1
  • Anandwardhan A. Hardikar
    • 1
  1. 1.Stem Cells and Diabetes Section, Lab 12National Center for Cell SciencePuneIndia

Personalised recommendations