Journal of Biosciences

, Volume 32, Issue 4, pp 797–804 | Cite as

Singing of Neoconocephalus robustus as an example of deterministic chaos in insects

Article

Abstract

We use nonlinear time series analysis methods to analyse the dynamics of the sound-producing apparatus of the katydid Neoconocephalus robustus. We capture the dynamics by analysing a recording of the singing activity. First, we reconstruct the phase space from the sound recording and test it against determinism and stationarity. After confirming determinism and stationarity, we show that the maximal Lyapunov exponent of the series is positive, which is a strong indicator for the chaotic behaviour of the system. We discuss that methods of nonlinear time series analysis can yield instructive insights and foster the understanding of acoustic communication among insects.

Keywords

Chaos time series analysis insect sound katydid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel H D I 1996 Analysis of observed chaotic data (New York: Springer)Google Scholar
  2. Behrman A 1999 Global and local dimensions of vocal dynamics; J. Acoust. Soc. Am. 105 432–443PubMedCrossRefGoogle Scholar
  3. Fee M S, Shraiman B, Pesaran B and Mitra P P 1998 The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird; Nature 395 67–71PubMedCrossRefGoogle Scholar
  4. Fitch W T, Neubauer J and Herzel H 2002 Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal communication; Anim. Behav. 63 407–418CrossRefGoogle Scholar
  5. Fletcher N H 2000 A class of chaotic bird calls?; J. Acoust. Soc. Am. 108 821–826PubMedCrossRefGoogle Scholar
  6. Fraser A M and Swinney H L 1986 Independent coordinates for strange attractors from mutual information; Phys. Rev. A 33 1134–1140PubMedCrossRefGoogle Scholar
  7. Hauser M D 1993 The evolution of nonhuman primate vocalizations: effects of phylogeny, body weight, and social context; Am. Nat. 142 528–542CrossRefGoogle Scholar
  8. Heath J E and Josephson R K 1970 Body temperature and singing in the katydid, Neoconocephalus robustus (Orthoptera, Tettigoniidae); Biol. Bull. 138 272–285CrossRefGoogle Scholar
  9. Hegger R and Kantz H 1999 Practical implementation of nonlinear time series methods: the TISEAN package; Chaos 9 413–440PubMedCrossRefGoogle Scholar
  10. Hegger R, Kantz H and Schreiber T 1999 The official web page of the TISEAN project is: www.mpipks-dresden.mpg.de/:_tisean Google Scholar
  11. Herzel H, Berry D, Titze I R and Saleh S 1994 Analysis of vocal disorders with methods from nonlinear dynamics; J. Speech Hear. Res. 37 1008–1019PubMedGoogle Scholar
  12. Kantz H 1994 A robust method to estimate the maximal Lyapunov exponent of a time series; Phys. Lett. A 185 77–87CrossRefGoogle Scholar
  13. Kantz H and Schreiber T 1997 Nonlinear time series analysis (Cambridge: Cambridge University Press)Google Scholar
  14. Kaplan D T and Glass L 1992 Direct test for determinism in a time series; Phys. Rev. Lett. 68 427–430PubMedCrossRefGoogle Scholar
  15. Kaplan D T and Glass L 1995 Understanding nonlinear dynamics (New York: Springer)Google Scholar
  16. Kennel M B, Brown R and Abarbanel H D I 1992 Determining embedding dimension for phase space reconstruction using a geometrical construction; Phys. Rev. A 45 3403–3411PubMedCrossRefGoogle Scholar
  17. Kodba S, Perc M and Marhl M 2005 Detecting chaos from a time series; Eur. J. Phys. 26 205–215CrossRefGoogle Scholar
  18. Kumar A and Mullick S K 1996 Nonlinear dynamical analysis of speech; J. Acoust. Soc. Am. 100 615–629CrossRefGoogle Scholar
  19. Mende W, Herzel H and Wermke H 1990 Bifurcations and chaos in newborn infant cries; Phys. Lett. A 145 418–424CrossRefGoogle Scholar
  20. Narayanan S N and Alwan A A 1995 A nonlinear dynamical systems analysis of fricative consonants; J. Acoust. Soc. Am. 97 2511–2524PubMedCrossRefGoogle Scholar
  21. Ott E 1993 Chaos in dynamical systems (Cambridge: Cambridge University Press)Google Scholar
  22. Perc M 2005a The dynamics of human gait; Eur. J. Phys. 26 525–534CrossRefGoogle Scholar
  23. Perc M 2005b Nonlinear time series analysis of the human electrocardiogram; Eur. J. Phys. 26 757–768CrossRefGoogle Scholar
  24. Riede T, Herzel H, Mehwald D, Seidner W, Trumler E, Tembrock G and Böhme G 2000 Nonlinear phenomena and their anatomical basis in the natural howling of a female dog-wolf breed; J. Acoust. Soc. Am. 108 1435–1442PubMedCrossRefGoogle Scholar
  25. Riede T, Herzel H, Hammerschmidt K, Brunnberg L and Tembrock G 2001 The harmonic-to-noise-ratio applied to dog barks; J. Acoust. Soc. Am. 110 2191–2197PubMedCrossRefGoogle Scholar
  26. Riede T, Mitchell B R, Tokuda I and Owren M J 2005 Characterizing noise in nonhuman vocalizations: acoustic analysis and human perception of barks by coyotes and dogs; J. Acoust. Soc. Am. 118 514–522PubMedCrossRefGoogle Scholar
  27. Rosenstein M T, Collins J J and De Luca C J 1993 A practical method for calculating largest Lyapunov exponents from small data sets; Physica D 65 117–134CrossRefGoogle Scholar
  28. Salvino L W and Cawley R 1994 Smoothness implies determinism: a method to detect it in time series; Phys. Rev. Lett. 73 1091–1094PubMedCrossRefGoogle Scholar
  29. Sauer T, Yorke J A and Casdagli M 1991 Embedology; J. Stat. Phys. 65 579–616CrossRefGoogle Scholar
  30. Schreiber T 1997 Detecting and analyzing nonstationarity in a time series with nonlinear cross-predictions; Phys. Rev. Lett. 78 843–846CrossRefGoogle Scholar
  31. Schuster H G 1989 Deterministic chaos (Weinheim: VCH)Google Scholar
  32. Scudder S H 1862 Materials for a monograph of the North American Orthoptera, including a catalogue of the known New England species; J. Boston Soc. Nat. Hist. 7 409–480Google Scholar
  33. Shaw R 1981 Strange attractors, chaotic behavior, and information flow; Z. Naturforsch. 36a 80–112Google Scholar
  34. Sprott J C 2003 Chaos and time-series analysis (Oxford: Oxford University Press)Google Scholar
  35. Strogatz S H 1994 Nonlinear dynamics and chaos (Massachusetts: Addison-Wesley)Google Scholar
  36. Takens F 1981 Detecting strange attractors in turbulence; in Lecture notes in mathematics (eds) D A Rand and L S Young (Berlin: Springer-Verlag) pp 366–381Google Scholar
  37. Titze I R, Baken R J and Herzel H 1993 Evidence of chaos in vocal fold vibration; in Vocal fold physiology: frontiers in basic science (ed) I R Titze (San Diego: Singular Publishing Group) pp 143–188Google Scholar
  38. Walker T J, Whitesell J J and Alexander R D 1973 The robust conehead: two widespread sibling species; Ohio J. Sci. 73 321–330Google Scholar
  39. Walker T J 1999 Web-version of handbook of crickets and katydids http://buzz.ifas.ufl.edu/
  40. Wayland R, Bromley D, Pickett D and Passamante A 1993 Recognizing determinism in a time series; Phys. Rev. Lett. 70 580–582PubMedCrossRefGoogle Scholar
  41. Wilden I, Herzel H, Peters G and Tembrock G 1998 Subharmonics, biphonation, and deterministic chaos in mammal vocalization; Bioacoustics 9 171–196Google Scholar
  42. Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Determining Lyapunov exponents from a time series; Physica D 16 285–317CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2007

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  2. 2.Department of Physics, Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia

Personalised recommendations