Advertisement

Interstellar communication: The colors of optical SETI

  • Michael HippkeEmail author
Article

Abstract

It has recently been argued from a laser engineering point of view that there are only a few magic colors for optical SETI. These are primarily the Nd:YAG line at \(1{,}064\,\hbox {nm}\) and its second harmonic (532.1 nm). Next best choices would be the sum frequency and/or second harmonic generation of Nd:YAG and Nd:YLF laser lines, 393.8 nm (near Fraunhofer CaK), 656.5 nm (\(\hbox {H}\alpha \)) and 589.1 nm (NaD2). In this paper, we examine the interstellar extinction, atmospheric transparency and scintillation, as well as noise conditions for these laser lines. For strong signals, we find that optical wavelengths are optimal for distances \(d\lesssim \,\hbox {kpc}\). Nd:YAG at \(\lambda =1{,}064\,\hbox {nm}\) is a similarly good choice, within a factor of two, under most conditions and out to \(d\lesssim 3\,\hbox {kpc}\). For weaker transmitters, where the signal-to-noise ratio with respect to the blended host star is relevant, the optimal wavelength depends on the background source, such as the stellar type. Fraunhofer spectral lines, while providing lower stellar background noise, are irrelevant in most use cases, as they are overpowered by other factors. Laser-pushed spaceflight concepts, such as “Breakthrough Starshot”, would produce brighter and tighter beams than ever assumed for OSETI. Such beamers would appear as naked eye stars out to kpc distances. If laser physics has already matured and converged on the most efficient technology, the laser line of choice for a given scenario (e.g., Nd:YAG for strong signals) can be observed with a narrow filter to dramatically reduce background noise, allowing for large field-of-view observations in fast surveys.

Keywords

Optical SETI lasers interstellar communication Techniques: photometric Instrumentation: spectrometers 

Notes

Acknowledgements

MH is thankful to Marlin (Ben) Schuetz for useful discussions.

References

  1. Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al. 2010, Nuclear Instruments and Methods in Physics Research A, 618, 139ADSGoogle Scholar
  2. Abeysekara, A. U., Archambault, S., Archer, A. 2016, ApJL, 818, L33ADSGoogle Scholar
  3. Adelberger, E. G., Battat, J. B. R., Birkmeier, K. J., et al. 2017, Classical and Quantum Gravity, 34, 245008ADSGoogle Scholar
  4. Andrews, L. C., Phillips, R. L., Shivamoggi, B. K. 1988, ApOpt, 27, 2150ADSGoogle Scholar
  5. Asimov, I. 1979, Extraterrestrial civilizations (Crown Publishers)Google Scholar
  6. Berta, S., Lutz, D., Santini, P., et al. 2013, A&A, 551, A100ADSGoogle Scholar
  7. Beskin, G., Borisov, N., Komarova, V., et al. 1997, Ap&SS, 252, 51ADSGoogle Scholar
  8. Boggess, N. W., Mather, J. C., Weiss, R., et al. 1992, ApJ, 397, 420ADSGoogle Scholar
  9. Borra, E. F. 2010a, ApJ, 715, 589ADSGoogle Scholar
  10. Borra, E. F. 2010b, A&A, 511, L6ADSGoogle Scholar
  11. Borra, E. F. 2012, AJ, 144, 181ADSGoogle Scholar
  12. Borra, E. F. 2013, ApJ, 774, 142ADSGoogle Scholar
  13. Borra, E. F. 2017, Journal of Astrophysics and Astronomy, 38, 23ADSGoogle Scholar
  14. Borra, E. F., Trottier, E. 2016, PASP, 128, 114201ADSGoogle Scholar
  15. Chin, S. L., François, V., Watson, J. M., Delisle, C. 1992, ApOpt, 31, 3383ADSGoogle Scholar
  16. Cocconi, G., Morrison, P. 1959, Nature, 184, 844ADSGoogle Scholar
  17. Coulman, C. E., Vernin, J., Coqueugniot, Y., Caccia, J. L. 1988, Applied Optics, 27, 155ADSGoogle Scholar
  18. Davenport, J. R. A., Kipping, D. M., Sasselov, D., Matthews, J. M., Cameron, C. 2016, ApJ, 829Google Scholar
  19. Draine, B. T. 2003a, ARA&A, 41, 241ADSGoogle Scholar
  20. Draine, B. T. 2003b, ApJ, 598, 1017ADSGoogle Scholar
  21. Draine, B. T. 2003c, ApJ, 598, 1026ADSGoogle Scholar
  22. Drake, F. 2013, International Journal of Astrobiology, 12, 173ADSGoogle Scholar
  23. Dressing, C. D., Charbonneau, D. 2015, ApJ, 807, 45ADSGoogle Scholar
  24. Eichler, D., Beskin, G. 2001, Astrobiology, 1, 489ADSGoogle Scholar
  25. Emma, C., Fang, K., Wu, J., Pellegrini, C. 2016, Physical Review Special Topics Accelerators and Beams, 19, 020705ADSGoogle Scholar
  26. ESA, ed. 1997, ESA Special Publication, Vol. 1200, The HIPPARCOS and TYCHO catalogues. Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry MissionGoogle Scholar
  27. Filippova, L. N. 1990, Astronomicheskij Tsirkulyar, 1544, 37ADSGoogle Scholar
  28. Filippova, L. N., Strelnitskij, V. S. 1988, Astronomicheskij Tsirkulyar, 1531, 31ADSGoogle Scholar
  29. Foreman-Mackey, D., Hogg, D. W., Morton, T. D. 2014, ApJ, 795, 64ADSGoogle Scholar
  30. Forgan, D. H. 2016, ArXiv e-prints, arXiv:1608.08770 [physics.pop-ph]
  31. Forgan, D. H. 2017, ArXiv e-prints, arXiv:1707.03730 [astro-ph.IM]
  32. Fritz, T. K., Gillessen, S., Dodds-Eden, K., et al. 2011, ApJ, 737, 73ADSGoogle Scholar
  33. Goodman, J. 1985, Statistical Optics, Wiley-Interscience (Wiley)Google Scholar
  34. Gowanlock, M. G., Patton, D. R., McConnell, S. M. 2011, Astrobiology, 11, 855ADSGoogle Scholar
  35. Hanna, D. S., Ball, J., Covault, C. E., et al. 2009, Astrobiology, 9, 345ADSGoogle Scholar
  36. Haywood, M., Di Matteo, P., Lehnert, M. D., Katz, D., Gómez, A. 2013, A&A, 560, A109ADSGoogle Scholar
  37. Heisenberg, W. 1927, Zeitschrift für Physik, 43, 172ADSGoogle Scholar
  38. Heller, R., Hippke, M., Kervella, P. 2017, AJ, 154, 115ADSGoogle Scholar
  39. Heller, R., Pudritz, R. E. 2016, Astrobiology, 16, 259ADSGoogle Scholar
  40. Hippke, M. 2017, ArXiv e-prints, arXiv:1706.03795 [astro-ph.IM]
  41. Hippke, M., Forgan, D. H. 2017, ArXiv e-prints, arXiv:1711.05761 [astro-ph.IM]
  42. Holder, J., Ashworth, P., LeBohec, S., Rose, H. J., Weekes, T. C. 2005, International Cosmic Ray Conference, 5, 387ADSGoogle Scholar
  43. Holzrichter, J. F., Manes, K. R. 2017, Applied Physics B: Lasers and Optics, 123, 42ADSGoogle Scholar
  44. Howard, A., Horowitz, P., Mead, C., et al. 2007, Acta Astronautica, 61, 78ADSGoogle Scholar
  45. Howard, A. W., Horowitz, P., Wilkinson, D. T., et al. 2004, ApJ, 613, 1270ADSGoogle Scholar
  46. Ivanov, V. D., Rieke, M. J., Engelbracht, C. W., et al. 2004, ApJS, 151, 387ADSGoogle Scholar
  47. Jiang, Y., Fang, S., Bi, Z., Xu, X., Ma, L. 2009, Applied Physics B, 98, 61Google Scholar
  48. Jones, A., Noll, S., Kausch, W., Szyszka, C., Kimeswenger, S. 2013, A&A, 560, A91ADSGoogle Scholar
  49. Kaushal, H., Jain, V., Kar, S. 2017, Free Space Optical Communication, Optical Networks (Springer India)Google Scholar
  50. Kayal, H., Balagurin, O., Schneider, A. 2017, IFEX, Feasibility Study, WuerzburgGoogle Scholar
  51. Kelsall, T., Weiland, J. L., Franz, B. A., et al. 1998, ApJ, 508, 44ADSGoogle Scholar
  52. Kenyon, S. L., Lawrence, J. S., Ashley, M. C. B., et al. 2006, PASP, 118, 924ADSGoogle Scholar
  53. Kingsley, S. 1995, in Astronomical Society of the Pacific Conference Series, Vol. 74, Progress in the Search for Extraterrestrial Life., ed. G. S. Shostak, 387Google Scholar
  54. Kingsley, S. A. 1993a, in Proc. SPIE, Vol. 1867, The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum, ed. S. A. Kingsley, 178Google Scholar
  55. Kingsley, S. A. 1993b, in Proc. SPIE, Vol. 1867, The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum, ed. S. A. Kingsley, 75Google Scholar
  56. Koechner, W. 2006, Solid-State Laser Engineering (Springer New York)zbMATHGoogle Scholar
  57. Kopeika, N. S., Zilberman, A., Sorani, Y. 2001, in Optical Pulse and Beam Propagation III, ed. Y. B. Band (SPIE)Google Scholar
  58. Kopparapu, R. k., Wolf, E. T., Arney, G., et al. 2017, ApJ, 845, 5ADSGoogle Scholar
  59. Korpela, E. J., Anderson, D. P., Bankay, R., et al. 2011, in Proc. SPIE, Vol. 8152, Instruments, Methods, and Missions for Astrobiology XIV, 815212Google Scholar
  60. Kulkarni, N., Lubin, P., Zhang, Q. 2018, The Astronomical Journal, 155, 155ADSGoogle Scholar
  61. Kurucz, R. L. 2005, Memorie della Societa Astronomica Italiana Supplementi, 8, 189ADSGoogle Scholar
  62. Leeb, W. R., Poppe, A., Hammel, E., et al. 2013, Astrobiology, 13, 521ADSGoogle Scholar
  63. Leinert, C., Bowyer, S., Haikala, L. K., et al. 1998, A&AS, 127, 1ADSGoogle Scholar
  64. Levasseur-Regourd, A. C., Dumont, R. 1980, A&A, 84, 277ADSGoogle Scholar
  65. Lineweaver, C. H., Fenner, Y., Gibson, B. K. 2004, Science, 303, 59ADSGoogle Scholar
  66. Lingam, M. 2016, Astrobiology, 16, 418ADSGoogle Scholar
  67. Lingam, M., Loeb, A. 2017, ApJL, 846, L21ADSGoogle Scholar
  68. Lingam, M., Loeb, A. 2018, ArXiv e-prints, arXiv:1803.07570 [astro-ph.EP]
  69. Lissauer, J. J. 2007, ApJL, 660, L149ADSGoogle Scholar
  70. López-Morales, M., Gómez-Pérez, N., Ruedas, T. 2011, Origins of Life and Evolution of the Biosphere, 41, 533ADSGoogle Scholar
  71. Lovis, C., Snellen, I., Mouillet, D., et al. 2017, A&A, 599, A16ADSGoogle Scholar
  72. Lubin, P. 2016a, ArXiv e-prints, arXiv:1604.01356 [astro-ph.EP]
  73. Lubin, P. 2016b, in Proc. SPIE, Vol. 9981, Planetary Defense and Space Environment Applications, 99810HGoogle Scholar
  74. Luger, R., Barnes, R. 2015, Astrobiology, 15, 119ADSGoogle Scholar
  75. MacGregor, M. A., Weinberger, A. J., Wilner, D. J., Kowalski, A. F., Cranmer, S. R. 2018, ApJ, 855Google Scholar
  76. Maiman, T. H. 1960, Nature, 187, 493ADSGoogle Scholar
  77. Maire, J., Wright, S. A., Werthimer, D., et al. 2014, in Proc. SPIE, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, 91474KGoogle Scholar
  78. Maire, J., Wright, S. A., Dorval, P., et al. 2016, in Proc. SPIE, Vol. 9908, Ground-based and Airborne Instrumentation for Astronomy VI, 990810Google Scholar
  79. Marsili, F., Verma, V. B., Stern, J. A., et al. 2013, Nature Photonics, 7, 210ADSGoogle Scholar
  80. Mazin, B. A., Bumble, B., Meeker, S. R., et al. 2012, Optics Express, 20, 1503ADSGoogle Scholar
  81. McHugh, S., Mazin, B. A., Serfass, B., et al. 2012, Review of Scientific Instruments, 83, 044702ADSGoogle Scholar
  82. McJunkin, M., France, K., Schindhelm, E., et al. 2016, ApJ, 828, 69ADSGoogle Scholar
  83. McTier, M. A., Kipping, D. M. 2018, MNRAS, arXiv:1801.05814 [astro-ph.EP]
  84. Mead, C. C. 2013, PhD thesis, Harvard UniversityGoogle Scholar
  85. Meadows, V. S., Arney, G. N., Schwieterman, E. W., et al. 2016, ArXiv e-prints, arXiv:1608.08620 [astro-ph.EP]
  86. Merali, Z. 2016, Science, 352, 1040ADSGoogle Scholar
  87. Morton, T. D., Swift, J. 2014, ApJ, 791, 10ADSGoogle Scholar
  88. Murphy, T. W. 2013, Reports on Progress in Physics, 76, 076901ADSGoogle Scholar
  89. Murphy, Jr., T. W., Adelberger, E. G., Battat, J. B. R., et al. 2012, Classical and Quantum Gravity, 29, 184005ADSGoogle Scholar
  90. Murphy, Jr., T. W., Adelberger, E. G., Battat, J. B. R., et al. 2008, PASP, 120, 20ADSGoogle Scholar
  91. Narusawa, S.-y., Aota, T., Kishimoto, R. 2018, NewA, 60, 61ADSGoogle Scholar
  92. Neckel, H., Labs, D. 1981, SoPh, 74, 231ADSGoogle Scholar
  93. Noll, S., Kausch, W., Barden, M., et al. 2012, A&A, 543, A92ADSGoogle Scholar
  94. Ong, R. A., Bhattacharya, D., Covault, C. E., et al. 1996, Astroparticle Physics, 5, 353ADSGoogle Scholar
  95. Osborn, J., Föhring, D., Dhillon, V. S., Wilson, R. W. 2015, MNRAS, 452, 1707ADSGoogle Scholar
  96. Owen, J. E., Mohanty, S. 2016, MNRAS, 459, 4088ADSGoogle Scholar
  97. Pavlenko, Y., Suárez Mascareño, A., Rebolo, R., et al. 2017, A&A, 606Google Scholar
  98. Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49ADSGoogle Scholar
  99. Petigura, E. A., Howard, A. W., Marcy, G. W. 2013, Proceedings of the National Academy of Science, 110, 19273ADSGoogle Scholar
  100. Popkin, G. 2017, Nature, 542, 20ADSGoogle Scholar
  101. Porquet, D., Grosso, N., Predehl, P., et al. 2008, A&A, 488, 549ADSGoogle Scholar
  102. Rayleigh, L. 1879, Philosophical Magazine Series 5, 8, 261Google Scholar
  103. Reines, A. E., Marcy, G. W. 2002, PASP, 114, 416ADSGoogle Scholar
  104. Ribas, I., Gregg, M. D., Boyajian, T. S., Bolmont, E. 2017, A&A, 603, A58ADSGoogle Scholar
  105. Riess, A. G., Fliri, J., Valls-Gabaud, D. 2012, ApJ, 745, 156ADSGoogle Scholar
  106. Rix, H.-W., Bovy, J. 2013, A&A Rv, 21, 61ADSGoogle Scholar
  107. Ross, M. 1965, Proceedings of the IEEE, 53, 1780Google Scholar
  108. Ross, M. 1993, in The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum, ed. S. A. Kingsley (SPIE)Google Scholar
  109. Ryter, C. E. 1996, Ap&SS, 236, 285ADSGoogle Scholar
  110. Samain, E., Mangin, J. F., Veillet, C., et al. 1998, A&AS, 130, 235ADSGoogle Scholar
  111. Schlafly, E. F., Finkbeiner, D. P. 2011, ApJ, 737, 103ADSGoogle Scholar
  112. Schuetz, M., Vakoch, D. A., Shostak, S., Richards, J. 2016, ApJL, 825, L5ADSGoogle Scholar
  113. Schultz, A. B., Hart, H. M., Hershey, J. L., et al. 1998, AJ, 115, 345ADSGoogle Scholar
  114. Schwartz, R. N., Townes, C. H. 1961, Nature, 190, 205ADSGoogle Scholar
  115. Shelus, P. J. 1985, IEEE Transactions on Geoscience and Remote Sensing, 23, 385ADSGoogle Scholar
  116. Shields, A. L., Ballard, S., Johnson, J. A. 2016a, PhR, 663, 1ADSGoogle Scholar
  117. Shields, A. L., Ballard, S., Johnson, J. A. 2016b, ArXiv e-prints, arXiv:1610.05765 [astro-ph.EP]
  118. Shvartsman, V., Beskin, G., Mitronova, S., et al. 1993, in Astronomical Society of the Pacific Conference Series, Vol. 47, Third Decennial US-USSR Conference on SETI, ed. G. S. Shostak, 381Google Scholar
  119. Sprangle, P., Penano, J., Hafizi, B., Ben-Zvi, I. 2010, IEEE Journal of Quantum Electronics, 46, 1135ADSGoogle Scholar
  120. Starr, C., Evers, C., Starr, L. 2006, Biology: Concepts and Applications, Brooks/Cole biology series (Thomson, Brooks/Cole)Google Scholar
  121. Stone, R. P. S., Wright, S. A., Drake, F., et al. 2005, Astrobiology, 5, 604ADSGoogle Scholar
  122. Sudar, N., Musumeci, P., Duris, J., et al. 2016, Physical Review Letters, 117, 174801ADSGoogle Scholar
  123. Tarkhov, M., Claudon, J., Poizat, J. P., et al. 2008, Applied Physics Letters, 92, 241112ADSGoogle Scholar
  124. Tarter, J. C., Backus, P. R., Mancinelli, R. L., et al. 2007, Astrobiology, 7, 30ADSGoogle Scholar
  125. Tellis, N. K., Marcy, G. W. 2015, PASP, 127, 540ADSGoogle Scholar
  126. Tellis, N. K., Marcy, G. W. 2017, AJ, 153, 251ADSGoogle Scholar
  127. Uehara, N., Ueda, K.-I. 1993, Optics Letters, 18, 505ADSGoogle Scholar
  128. Valencic, L. A., Clayton, G. C., Gordon, K. D. 2004, ApJ, 616, 912ADSGoogle Scholar
  129. Vergely, J.-L., Ferrero, R. F., Egret, D., Koeppen, J. 1998, A&A, 340, 543ADSGoogle Scholar
  130. Vidotto, A. A., Jardine, M., Morin, J., et al. 2013, A&A, 557, A67ADSGoogle Scholar
  131. Wang, C., Niu, Y., Du, S., et al. 2013, Applied Optics, 52, 7494ADSGoogle Scholar
  132. Wang, Y., Liu, Y., Tian, F., et al. 2016, ApJL, 823, L20ADSGoogle Scholar
  133. Webster, S. A., Oxborrow, M., Gill, P. 2004, Optics Letters, 29, 1497ADSGoogle Scholar
  134. Welsh, B., Vallerga, J., Kotze, M., Wheatley, J. 2018, in American Astronomical Society Meeting Abstracts, Vol. 231, American Astronomical Society Meeting Abstracts, 104.01Google Scholar
  135. Wende, S., Reiners, A., Seifahrt, A., Bernath, P. F. 2010, A&A, 523, A58ADSGoogle Scholar
  136. Wright, S. A., Stone, R. P. S., Drake, F., et al. 2004, in IAU Symposium, Vol. 213, Bioastronomy 2002: Life Among the Stars, Norris, R., Stootman, F., eds. 415Google Scholar
  137. Wright, S. A., Werthimer, D., Treffers, R. R., et al. 2014, in Proc. SPIE, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, 91470JGoogle Scholar
  138. Zhang, J., Slysz, W., Verevkin, A., et al. 2003, IEEE Transactions on Applied Superconductivity, 13, 180ADSGoogle Scholar
  139. Zhu, X., Kahn, J. 2002, IEEE Transactions on Communications, 50, 1293Google Scholar
  140. Zilberman, A., Kopeika, N. S., Sorani, Y. 2001, in Laser Weapons Technology II, Thompson, W. E., Merritt, P. H., eds. (SPIE)Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Sonneberg ObservatorySonnebergGermany

Personalised recommendations