Advertisement

Interstellar communication: Short pulse duration limits of optical SETI

  • Michael HippkeEmail author
Article

Abstract

Previous and ongoing searches for extraterrestrial optical and infrared nanosecond laser pulses and narrow line-width continuous emissions have so far returned null results. At the commonly used observation cadence of \(\sim 10^{-9}\,\hbox {s}\), sky-integrated starlight is a relevant noise source for large field-of-view surveys. This can be reduced with narrow bandwidth filters, multipixel detectors, or a shorter observation cadence. We examine the limits of short pulses set by the uncertainty principle, interstellar scattering, atmospheric scintillation, refraction, dispersion and receiver technology. We find that optimal laser pulses are time-bandwidth limited Gaussians with a duration of \(\Delta t \approx \,10^{-12}\,\hbox {s}\) at a wavelength \(\lambda _{0}\approx 1\,\upmu \hbox {m}\), and a spectral width of \(\Delta \lambda \approx 1.5\,\hbox {nm}\). Shorter pulses are too strongly affected through Earth’s atmosphere. Given certain technological advances, survey speed can be increased by three orders of magnitude when moving from ns to ps pulses. Faster (and/or parallel) signal processing would allow for an all-sky-at-once survey of lasers targeted at Earth.

Keywords

Optical SETI lasers interstellar communication Techniques: photometric Instrumentation: photometers 

Notes

Acknowledgements

MH is thankful to Marlin (Ben) Schuetz for useful discussions.

References

  1. Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al. 2010, Nuclear Instruments and Methods in Physics Research A, 618, 139ADSGoogle Scholar
  2. Abeysekara, A. U., Archambault, S., Archer, A. 2016, ApJL, 818, L33ADSGoogle Scholar
  3. Acharya, B. S., Actis, M., Aghajani, T., et al. 2013, Astroparticle Physics, 43, 3ADSGoogle Scholar
  4. Actis, M., Agnetta, G., Aharonian, F., et al. 2011, Experimental Astronomy, 32, 193ADSGoogle Scholar
  5. Adelberger, E. G., Battat, J. B. R., Birkmeier, K. J., et al. 2017, Classical and Quantum Gravity, 34, 245008ADSGoogle Scholar
  6. Akhperjanian, A., Sahakian, V. 2004, Astroparticle Physics , 21, 149ADSGoogle Scholar
  7. Alder, B. 2012, Radio Astronomy, Methods in Computational Physics, Elsevier, AmsterdamGoogle Scholar
  8. Andrews, L. C., Phillips, R. L., Shivamoggi, B. K. 1988, ApOpt, 27, 2150ADSGoogle Scholar
  9. Arruda, L., GAW Collaboration. 2010, ArXiv e-prints, arXiv:1006.2266 [astro-ph.HE]
  10. Benn, C. R., Ellison, S. L. 1998, NewAR, 42, 503ADSGoogle Scholar
  11. Beskin, G., Borisov, N., Komarova, V., et al. 1997, Ap&SS, 252, 51ADSGoogle Scholar
  12. Betz, A. 1993, in Shostak G. S., eds, Astronomical Society of the Pacific Conference Series, Third Decennial US-USSR Conference on SETI, Volume 47, p. 373Google Scholar
  13. Bhathal, R. 2000, in Lemarchand G., Meech K., eds, Astronomical Society of the Pacific Conference Series, Bioastronomy 99, Volume 213Google Scholar
  14. Bhathal, R. 2001, in Kingsley S. A., Bhathal R., eds, Proceedings of SPIE, The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III, Volume 4273, p. 144Google Scholar
  15. Billotta, S., Belluso, M., Bonanno, G., et al. 2009, Journal of Modern Optics, 56, 273ADSGoogle Scholar
  16. Borra, E. F. 2010a, ApJ, 715, 589ADSGoogle Scholar
  17. Borra. 2010b, A&A, 511, L6Google Scholar
  18. Borra. 2012, AJ, 144, 181Google Scholar
  19. Borra. 2013, ApJ, 774, 142Google Scholar
  20. Borra. 2017, Journal of Astrophysics and Astronomy, 38, 23ADSGoogle Scholar
  21. Borra, E. F., Trottier, E. 2016, PASP, 128, 114201ADSGoogle Scholar
  22. Boyd, R. 2013, Nonlinear Optics, Elsevier, AmsterdamGoogle Scholar
  23. Brandl, P., Schidl, S., Zimmermann, H. 2014, IEEE Journal of Selected Topics in Quantum Electronics, 20, 391ADSGoogle Scholar
  24. Chin, S. L., François, V., Watson, J. M., Delisle, C. 1992, ApOpt, 31, 3383ADSGoogle Scholar
  25. Ciddor, P. E. 1996, Applied Optics, 35, 1566ADSGoogle Scholar
  26. Claver, C. F., Sweeney, D. W., Tyson, J. A., et al. 2004, in Oschmann J. M., Jr., ed, Proceedings of SPIE, Ground-Based Telescopes, Volume 5489, p. 705Google Scholar
  27. Coldwell, C. M. 2002, PhD thesis, Harvard UniversityGoogle Scholar
  28. Cordes, J. A. 2002, in Osgood D., Ekers R. D., eds, SETI 2020: A Roadmap for the Search for Extraterrestrial Intelligence, Seti PressGoogle Scholar
  29. Cordes, J. M., Lazio, T. J. 1991, ApJ, 376, 123ADSGoogle Scholar
  30. Cordes, J. M., Lazio, T. J. W. 2002, ArXiv Astrophysics e-prints, arXiv:astro-ph/0207156
  31. Costa, J., Pimenta, M., Tome, B. 2007, IEEE Transactions on Nuclear Science, 54, 313ADSGoogle Scholar
  32. Coulman, C. E., Vernin, J., Coqueugniot, Y., Caccia, J. L. 1988, Applied Optics, 27, 155ADSGoogle Scholar
  33. Coulman, C. E., Vernin, J., Fuchs, A. 1995, ApOpt, 34, 5461ADSGoogle Scholar
  34. Covault, C. 2013, in APS April Meeting Abstracts, S2.002Google Scholar
  35. Currie, D. G., Prochazka, I. 2014, in van Eijk A. M. J., Davis C. C., Hammel S. M., eds, Laser Communication and Propagation Through the Atmosphere and Oceans III, SPIEGoogle Scholar
  36. Cusumano, G., Agnetta, G., Biondo, B., et al. 2002, MmSAI, 73, 1211ADSGoogle Scholar
  37. Davies, J. M., Cotton, E. S. 1957, Solar Energy, 1, 16ADSGoogle Scholar
  38. Dickinson, H., Krennrich, F., Weinstein, A., et al. 2018, ArXiv e-prints, arXiv:1802.05715 [astro-ph.IM]
  39. Dravins, D., LeBohec, S., Jensen, H., Nuñez, P. D., CTA Consortium, 2013, Astroparticle Physics, 43, 331Google Scholar
  40. Edlén, B. 1966, Metrologia, 2, 71ADSGoogle Scholar
  41. Edwards, R. T., Hobbs, G. B., Manchester, R. N. 2006, MNRAS, 372, 1549ADSGoogle Scholar
  42. Eichler, D., Beskin, G. 2001, Astrobiology, 1, 489ADSGoogle Scholar
  43. Ferraro, M. S., Clark, W. R., Rabinovich, W. S., et al. 2015, Applied Optics, 54, F182Google Scholar
  44. Foster, M. A., Salem, R., Geraghty, D. F., et al. 2008, Nature, 456, 81ADSGoogle Scholar
  45. Füser, H., Eichstädt, S., Baaske, K., et al. 2012, Measurement Science and Technology, 23, 025201ADSGoogle Scholar
  46. Gemmell, N. R., Hills, M., Bradshaw, T., et al. 2017, Superconductor Science Technology, 30, 11LT01Google Scholar
  47. Gol’tsman, G. N., Okunev, O., Chulkova, G., et al. 2001, Applied Physics Letters, 79, 705ADSGoogle Scholar
  48. González Hernández, J. I., Pepe, F., Molaro, P., Santos, N. 2017, ArXiv e-prints, arXiv:1711.05250 [astro-ph.IM]
  49. Goodman, J. 1985, Statistical Optics, Wiley, HobokenGoogle Scholar
  50. Griffiths, D. J. 2004, Introduction to Quantum Mechanics, Prentice Hall International, Upper Saddle RiverGoogle Scholar
  51. Grushka, E. 1972, Analytical Chemistry, 44, 1733Google Scholar
  52. Hadfield, R. H. 2009, Nature Photonics, 3, 696ADSGoogle Scholar
  53. Hampf, D., Rowell, G., Wild, N., et al. 2011, Advances in Space Research, 48, 1017ADSGoogle Scholar
  54. Hankins, T. H., Eilek, J. A. 2007, ApJ, 670, 693ADSGoogle Scholar
  55. Hankins, T. H., Kern, J. S., Weatherall, J. C., Eilek, J. A. 2003, Nature, 422, 141ADSGoogle Scholar
  56. Hanna, D. S., Ball, J., Covault, C. E., et al. 2009, Astrobiology, 9, 345ADSGoogle Scholar
  57. Hao, Y., Ye, Q., Pan, Z., Cai, H., Qu, R. 2013, Optik - International Journal for Light and Electron Optics, 124, 2417Google Scholar
  58. Hardy, J. W. 1998, Adaptive Optics for Astronomical Telescopes, Oxford University Press, Oxford, p. 448Google Scholar
  59. Heisenberg, W. 1927, Zeitschrift für Physik, 43, 172ADSGoogle Scholar
  60. Hinton, J., Hermann, G., Krötz, P., Funk, S. 2006, Astroparticle Physics, 26, 22ADSGoogle Scholar
  61. Hobbs, G., Lyne, A. G., Kramer, M. 2010, MNRAS, 402, 1027ADSGoogle Scholar
  62. Hobbs, G. B., Edwards, R. T., Manchester, R. N. 2006, MNRAS, 369, 655ADSGoogle Scholar
  63. Holder, J., Ashworth, P., LeBohec, S., Rose, H. J., Weekes, T. C. 2005, International Cosmic Ray Conference, 5, 387ADSGoogle Scholar
  64. Holzrichter, J. F., Manes, K. R. 2017, Applied Physics B: Lasers and Optics, 123, 42ADSGoogle Scholar
  65. Horowitz, P., Coldwell, C. M., Howard, A. B., et al. 2001, in Kingsley S. A., Bhathal R., eds, Proceedings of SPIE, The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III, Volume 4273, p. 119Google Scholar
  66. Howard, A., Horowitz, P., C., C. 2000a, American Institute of Aeronautics and Astronautics, Proceedings of the 51st IAF Congress in Rio de Janeiro, p. 1Google Scholar
  67. Howard, A., Horowitz, P., Coldwell, C., et al. 2000b, in Lemarchand G., Meech K., eds, Astronomical Society of the Pacific Conference Series, Bioastronomy 99, Volume 213Google Scholar
  68. Howard, A. B., Horowitz, P. 2001, in Kingsley S. A., Bhathal R., eds, The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III, SPIEGoogle Scholar
  69. Howard, A. B., Horowitz, P. 2001, in Kingsley S. A., Bhathal R., eds, Proceedings of SPIE, The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III, Volume 4273, p. 153Google Scholar
  70. Howard, A. W., Horowitz, P., Wilkinson, D. T., et al. 2004, ApJ, 613, 1270ADSGoogle Scholar
  71. Hulley, G. C., Pavlis, E. C. 2007, Journal of Geophysical Research (Solid Earth), 112, B06417ADSGoogle Scholar
  72. Jones, A., Noll, S., Kausch, W., Szyszka, C., Kimeswenger, S. 2013, A&A, 560, A91ADSGoogle Scholar
  73. Karpov, S., Beskin, G., Biryukov, A., et al. 2007, Ap&SS, 308, 595ADSGoogle Scholar
  74. Kelly, D. E. T. T. S., Andrews, L. C. 1999, Waves in Random Media, 9, 307ADSGoogle Scholar
  75. Kenyon, S. L., Lawrence, J. S., Ashley, M. C. B., et al. 2006, PASP, 118, 924ADSGoogle Scholar
  76. Kim, K. T., Zhang, C., Shiner, A. D., et al. 2013, Nature Photonics, 7, 958ADSGoogle Scholar
  77. Kingsley, S. 1995, in Shostak G. S., ed, Astronomical Society of the Pacific Conference Series, Progress in the Search for Extraterrestrial Life, Volume 74, p. 387Google Scholar
  78. Kingsley, S. A. 1993a, in Kingsley S. A., ed, Proceedings of SPIE, The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum, Volume 1867, p. 178Google Scholar
  79. Kingsley, S. A. 1993b, in Kingsley S. A., ed, Proceedings of SPIE, The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum, Volume 1867, p. 75Google Scholar
  80. Kolmogorov, A. 1941, Akademiia Nauk SSSR Doklady, 30, 301ADSGoogle Scholar
  81. Kopeika, N. S., Zilberman, A., Sorani, Y. 2001, in Band Y. B., ed, Optical Pulse and Beam Propagation III, SPIEGoogle Scholar
  82. Korpela, E. J., Anderson, D. P., Bankay, R., et al. 2011, in Proceedings of SPIE, Instruments, Methods, and Missions for Astrobiology XIV, Volume 8152, 815212Google Scholar
  83. Kral, L., Prochazka, I., Hamal, K. 2006, in Kohnle A., Stein K., eds, Optics in Atmospheric Propagation and Adaptive Systems IX, SPIEGoogle Scholar
  84. Krishnakumar, M. A., Joshi, B. C., Manoharan, P. K. 2017, ApJ, 846, 104ADSGoogle Scholar
  85. Krishnakumar, M. A., Mitra, D., Naidu, A., Joshi, B. C., Manoharan, P. K. 2015, ApJ, 804, 23ADSGoogle Scholar
  86. Lazaridis, P., Debarge, G., Gallion, P. 1995, Optics Letters, 20, 1160ADSGoogle Scholar
  87. Leeb, W. R., Poppe, A., Hammel, E., et al. 2013, Astrobiology, 13, 521ADSGoogle Scholar
  88. Lu, H., Zhao, W., Xie, X. 2012, Optics Communications, 285, 3169ADSGoogle Scholar
  89. Lucarelli, F., Barrio, J., Antoranz, P., et al. 2008, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 589, 415ADSGoogle Scholar
  90. Lyne, A., Graham-Smith, F., Graham-Smith, F. 2006, Pulsar Astronomy, Cambridge Astrophysics, Cambridge University Press, CambridgeGoogle Scholar
  91. Maccarone, M. C., Assis, P., Catalano, O., et al. 2008, International Cosmic Ray Conference, 3, 1297ADSGoogle Scholar
  92. MacMahon, D. H. E., Price, D. C., Lebofsky, M., et al. 2018, PASP, 130, 044502ADSGoogle Scholar
  93. Maire, J., Wright, S. A., Werthimer, D., et al. 2014, in Proceedings of SPIE, Ground-based and Airborne Instrumentation for Astronomy V, Volume 9147, 91474KGoogle Scholar
  94. Maire, J., Wright, S. A., Dorval, P., et al. 2016, in Proceedings of SPIE, Ground-Based and Airborne Instrumentation for Astronomy VI, Volume 9908, 990810Google Scholar
  95. Majumdar, A., Ricklin, J. 2010, Free-Space Laser Communications: Principles and Advances, Optical and Fiber Communications Reports, Springer, New YorkGoogle Scholar
  96. Marcuse, D. 1981, Applied Optics, 20, 3573ADSGoogle Scholar
  97. Marsili, F., Verma, V. B., Stern, J. A., et al. 2013, Nature Photonics, 7, 210ADSGoogle Scholar
  98. Mazin, B. A., Bumble, B., Meeker, S. R., et al. 2012, Optics Express, 20, 1503ADSGoogle Scholar
  99. McHugh, S., Mazin, B. A., Serfass, B., et al. 2012, Review of Scientific Instruments, 83, 044702ADSGoogle Scholar
  100. Mead, C. C. 2013, PhD thesis, Harvard UniversityGoogle Scholar
  101. Mendes, V. B. 2004, Geophysical Research Letters, 31Google Scholar
  102. Mirzoyan, R., Lorenz, E. 1994, Measurement of the Night Sky Light Background at LaPalma, Max-Planck-Inst. für Physik, GarchingGoogle Scholar
  103. Moderski, R., Aguilar, J. A., Barnacka, A., et al. 2013, ArXiv e-prints, arXiv:1307.3137 [astro-ph.IM]
  104. Murphy, T. W. 2013, Reports on Progress in Physics, 76, 076901ADSGoogle Scholar
  105. Murphy, Jr., T. W., Adelberger, E. G., Battat, J. B. R., et al. 2012, Classical and Quantum Gravity, 29, 184005ADSGoogle Scholar
  106. Murphy. 2008, PASP, 120, 20Google Scholar
  107. Neill, D. R., Muller, G., Hileman, E., et al. 2016, in Proceedings of SPIE, Ground-based and Airborne Telescopes VI, Volume 9906, 99060QGoogle Scholar
  108. Noll, S., Kausch, W., Barden, M., et al. 2012, A&A, 543, A92ADSGoogle Scholar
  109. Ong, R. A., Bhattacharya, D., Covault, C. E., et al. 1996, Astroparticle Physics, 5, 353ADSGoogle Scholar
  110. Osborn, J., Föhring, D., Dhillon, V. S., Wilson, R. W. 2015, MNRAS, 452, 1707ADSGoogle Scholar
  111. Plauchu-Frayn, I., Richer, M. G., Colorado, E., et al. 2017, PASP, 129, 035003ADSGoogle Scholar
  112. Preuß, S., Hermann, G., Hofmann, W., Kohnle, A. 2002, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 481, 229ADSGoogle Scholar
  113. Prochazka, I., Hamal, K., Kral, L. 2004, in Singh U. N., ed, Laser Radar Techniques for Atmospheric Sensing, SPIEGoogle Scholar
  114. Reines, A. E., Marcy, G. W. 2002, PASP, 114, 416ADSGoogle Scholar
  115. Roy, F. P. 2009, JRASC, 103, 54ADSGoogle Scholar
  116. Rullière, C., ed. 2005, Femtosecond Laser Pulses, Springer, New YorkGoogle Scholar
  117. Samain, E., Mangin, J. F., Veillet, C., et al. 1998, A&AS, 130, 235ADSGoogle Scholar
  118. Sánchez, S. F., Aceituno, J., Thiele, U., Pérez-Ramírez, D., Alves, J. 2007, PASP, 119, 1186ADSGoogle Scholar
  119. Schawlow, A. L., Townes, C. H. 1958, Physical Review, 112, 1940ADSGoogle Scholar
  120. Schliesser, A., Mirzoyan, R. 2005, Astroparticle Physics, 24, 382ADSGoogle Scholar
  121. Schuetz, M., Vakoch, D. A., Shostak, S., Richards, J. 2016, ApJl, 825, L5ADSGoogle Scholar
  122. Schwarzschild, K. 1905, Astronomische Mitteilungen der Universitaets-Sternwarte zu Goettingen, 10Google Scholar
  123. Shcheslavskiy, V., Morozov, P., Divochiy, A., et al. 2016, Review of Scientific Instruments, 87, 053117Google Scholar
  124. Shelus, P. J. 1985, IEEE Transactions on Geoscience and Remote Sensing, 23, 385ADSGoogle Scholar
  125. Shostak, S. 2011, Acta Astronautica, 68, 366ADSGoogle Scholar
  126. Shvartsman, V., Beskin, G., Mitronova, S., et al. 1993, in Shostak G. S., ed, Astronomical Society of the Pacific Conference Series, Third Decennial US-USSR Conference on SETI, Volume 47, p. 381Google Scholar
  127. Shvartsman, V. F. 1977, Soobshcheniya Spetsial’noj Astrofizicheskoj Observatorii, 19, 5ADSGoogle Scholar
  128. Shvartsman, V. F., Bernstein, I. N., Beskin, G. M., et al. 1997, Astronomical and Astrophysical Transactions, 13, 13ADSGoogle Scholar
  129. Siemion, A., Benford, J., Cheng-Jin, J., et al. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), p. 116Google Scholar
  130. Siemion, A. P. V., Demorest, P., Korpela, E., et al. 2013, ApJ, 767, 94ADSGoogle Scholar
  131. Sims, G., Ashley, M. C. B., Cui, X., et al. 2012, PASP, 124, 637ADSGoogle Scholar
  132. Smith, A. W., Landon, A. J. 1970, Applied Physics Letters, 17, 340ADSGoogle Scholar
  133. Sollerman, J., Lundqvist, P., Lindler, D., et al. 2000, ApJ, 537, 861ADSGoogle Scholar
  134. Stone, R. P. S., Wright, S. A., Drake, F., et al. 2005, Astrobiology, 5, 604ADSGoogle Scholar
  135. Tarkhov, M., Claudon, J., Poizat, J. P., et al. 2008, Applied Physics Letters, 92, 241112ADSGoogle Scholar
  136. Taylor, J. H., Cordes, J. M. 1993, ApJ, 411, 674ADSGoogle Scholar
  137. Tellis, N. K., Marcy, G. W. 2017, AJ, 153, 251ADSGoogle Scholar
  138. Tjin-Tham-Sjin, D. E., Young, C. Y., Andrews, L. C. 1998, in Mecherle G. S., ed, Free-Space Laser Communication Technologies X, SPIEGoogle Scholar
  139. Trimble, V. 1973, PASP, 85, 579ADSGoogle Scholar
  140. Vassiliev, V., Fegan, S., Brousseau, P. 2007, Astroparticle Physics, 28, 10ADSGoogle Scholar
  141. Vassiliev, V. V., Fegan, S. J. 2008, International Cosmic Ray Conference, 3, 1445ADSGoogle Scholar
  142. Welsh, B., Vallerga, J., Kotze, M., Wheatley, J. 2018, in American Astronomical Society Meeting Abstracts, American Astronomical Society Meeting Abstracts, 104.01, Volume 231Google Scholar
  143. Wijaya, D. D., Brunner, F. K. 2011, Journal of Geodesy, 85, 623ADSGoogle Scholar
  144. Wright, J. T., Eastman, J. D. 2014, PASP, 126, 838ADSGoogle Scholar
  145. Wright, S. A., Drake, F., Stone, R. P., Treers, D., Werthimer, D. 2001, in Kingsley S. A., Bhathal R., eds, Proceedings SPIE, The Search for Extraterrestrial Intelligence (SETI) in the Optical Spectrum III, Volume 4273, p. 173Google Scholar
  146. Wright, S. A., Stone, R. P. S., Drake, F., et al. 2004, in Norris R., Stootman F., eds, IAU Symposium, Bioastronomy 2002: Life Among the Stars, Volume 213, p. 415Google Scholar
  147. Wright, S. A., Werthimer, D., Treers, R. R., et al. 2014, in Proceedings of SPIE, Ground-Based and Airborne Instrumentation for Astronomy V, Volume 9147, 91470JGoogle Scholar
  148. Xu, S., Zhang, B. 2017, ApJ, 835, 2ADSGoogle Scholar
  149. Yang, Y., Moore, A. M., Krisciunas, K., et al. 2017, AJ,154, 6Google Scholar
  150. Yao, J. M., Manchester, R. N., Wang, N. 2017, ApJ, 835, 29ADSGoogle Scholar
  151. Young, A. T. 1967, AJ, 72, 747Google Scholar
  152. Young, C. Y., Andrews, L. C., Ishimaru, A. 1998, ApOpt, 37, 7655ADSGoogle Scholar
  153. Zampieri, L., Naletto, G., Barbieri, C., et al. 2015, in Proceedings of SPIE, Photon Counting Applications 2015, Volume 9504, 95040CGoogle Scholar
  154. Zhang, J., Slysz, W., Verevkin, A., et al. 2003, IEEE Transactions on Appiled Superconductivity, 13, 180ADSGoogle Scholar
  155. Zhu, X., Kahn, J. 2002, IEEE Transactions on Communications, 50, 1293Google Scholar
  156. Zilberman, A., Kopeika, N. S., Sorani, Y. 2001, in Thompson W. E., Merritt P. H., eds, Laser Weapons Technology II, SPIEGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Sonneberg ObservatorySonnebergGermany

Personalised recommendations