Advertisement

Lissajous motion near Lagrangian point \( L_{2} \) in radial solar sail

  • Arun Kumar YadavEmail author
  • Badam Singh Kushvah
  • Uday Dolas
Article
  • 19 Downloads

Abstract

An attempt was made to study the dynamics close to the collinear libration point \( L_{2} \) of the radial solar sail circular-restricted three-body problem (RSCRTBP) in the Sun–Jupiter System, where the third massless body is a solar sail. We analyse the qausi-periodic (Lissajous solutions) orbits about the libration point \( L_{2} \). The Lindstedt–Poincaré approximation for the qausi-periodic orbits was used for numerical simulations. We utilized linear quadratic regulator (LQR) to stabilize the full nonlinear model, and linear state-feedback controller was designed to stabilize the trajectory.

Keywords

Solar sail Lissajous orbit feedback control linear quadratic regulator (LQR) 

Notes

Acknowledgements

We are thankful to the Science and Engineering Research Board, Government of India, for providing financial support through SERB research project No.-EMR/2016/001145.

References

  1. Biggs, J. D., McInnes, C. R. 2010, J. Guidance, Control, Dynamics 33(3), 1017Google Scholar
  2. Farquhar, R. W., Kamel, A. A. 1973, Celestial Mechanics 7(4), 458ADSCrossRefGoogle Scholar
  3. Farrés, A., Jorba, À. 2010a, Acta Astronautica 67(7), 979ADSCrossRefGoogle Scholar
  4. Farrés, A., Jorba, À. 2010b, Celestial Mechanics and Dynamical Astronomy 107(1), 233ADSMathSciNetCrossRefGoogle Scholar
  5. Garner, C., Diedrich, B., Leipold, M. 1999, A summary fo solar sail technology developments and proposed demonstration missionsGoogle Scholar
  6. Goldstein, B. E., Buffington, A., Cummings, A. C., Fisher, R. R., Jackson, B. V., Liewer, P. C., Mewaldt, R. A., Neugebauer, M. 1998, in: Missions to the Sun II, Volume 3442, p. 65. International Society for Optics and PhotonicsGoogle Scholar
  7. Grøtte, M. E., Holzinger, M. J. 2017, Advances in Space Research 59, 1112.  https://doi.org/10.1016/j.asr.2016.11.020
  8. Hu, X., Gong, S., Li, J. 2014, Advances in Space Research 54, 72.  https://doi.org/10.1016/j.asr.2014.03.008
  9. Li, M., Peng, H., Zhong, W. 2016, Nonlinear Dynamics 83(4), 2241MathSciNetCrossRefGoogle Scholar
  10. Macdonald, M., McInnes, C. 2011, Advances in Space Research 48(11), 1702ADSCrossRefGoogle Scholar
  11. Macdonald, M., Hughes, G., McInnes, C., Lyngvi, A., Falkner, P., Atzei, A. 2006, J. Spacecraft and Rockets 43(5), 960ADSCrossRefGoogle Scholar
  12. McInnes, C. R. 1993, J. Spacecraft and Rockets 30, 782.  https://doi.org/10.2514/3.26393
  13. Richardson, D. L. 1980, Celestial Mechanics and Dynamical Astronomy 22(3), 241CrossRefGoogle Scholar
  14. Shahid, K., Kumar, K. 2010, J. Spacecraft and Rockets 47(4), 614ADSCrossRefGoogle Scholar
  15. Simo, J., McInnes, C. R. 2009, Communications in Nonlinear Science and Numerical Simulation 14(12), 4191ADSMathSciNetCrossRefGoogle Scholar
  16. Sood, R. 2012, Solar sail applications for mission design in sun-planet systems from the perspective of the circular restricted three-body problem. Master’s thesis, Purdue UniversityGoogle Scholar
  17. Tsirogiannis, G., Douskos, C., Perdios, E. 2006, Astrophysics and Space Science 305(4), 389ADSCrossRefGoogle Scholar
  18. Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Yonekura, K., Hoshino, H., Kawaguchi, J. 2013, Acta Astronautica 82(2), 183ADSCrossRefGoogle Scholar
  19. Verrier, P., Waters, T., Sieber, J. 2014, Celestial Mechanics and Dynamical Astronomy 120, 373.  https://doi.org/10.1007/s10569-014-9575-2
  20. Waters, T. J., McInnes, C. R. 2007, J. Guidance Control, Dynamics 30(3), 687Google Scholar
  21. Yuan, J., Gao, C., Zhang, J. 2018, Ap&SS 363, 23.  https://doi.org/10.1007/s10509-017-3223-8 ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsIndian Institute of Technology (ISM)DhanbadIndia
  2. 2.C. S. A. Govt. P. G. CollegeSehoreIndia

Personalised recommendations