Advertisement

A new technique for understanding magnetosphere–ionosphere coupling using directional derivatives of SuperDARN convection flow

  • S. N. M. Azizul Hoque
  • Frances Fenrich
Article
  • 34 Downloads

Abstract

The purpose of this paper is to present and evaluate a new technique to better understand ionospheric convection and it’s magnetospheric drivers using convection maps derived from the Super Dual Auroral Radar Network (SuperDARN). We postulate that the directional derivative of the SuperDARN ionospheric convection flow can be used as a technique for understanding solar wind–magnetosphere–ionosphere coupling by identifying regions of strong acceleration/deceleration of plasma flow associated with drivers of magnetospheric convection such as magnetic reconnection. Thus, the technique may be used to identify the open–closed magnetic field line boundary (OCB) in certain circumstances. In this study, directional derivatives of the SuperDARN ionospheric convection flow over a four and a half hour interval on Nov. 04, 2001, is presented during which the interplanetary magnetic field was predominantly southward. At each one-minute time point in the interval the positive peak in the directional derivative of flow is identified and evaluated via comparison with known indicators of the OCB including the poleward boundary of ultraviolet emissions from three FUV detectors onboard the IMAGE spacecraft as well as the SuperDARN spectral widths. Good comparison is found between the location of the peak in the directional derivative of SuperDARN flow and the poleward boundary of ultraviolet emissions confirming that acceleration of ionospheric plasma flow is associated with magnetic reconnection and the open–closed boundary.

Keywords

SuperDARN directional derivative technique ionospheric convection driven by solar wind–magnetosphere–ionosphere coupling open–closed magnetic field line boundary 

Notes

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada. The authors thank the SuperDARN PIs for providing the SuperDARN data and software. We gratefully acknowledge the IMAGE FUV Imager team and PI Stephen Mende. Auroral boundary data were derived and provided by the British Antarctic Survey based on IMAGE satellite data. The SuperDARN data were collected from superdarn.org. The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface.

References

  1. Andre R., Pinnock M., Rodger A. S. 1999, Geophys. Res. Lett. 26, 3353–3356ADSCrossRefGoogle Scholar
  2. Baker K. B., Dudeney J. R., Greenwald R. A., Pinnock M., Newell P. T., Rodger A. S., Mattin N., Meng C.-I. 1995, J. Geophys. Res. 100, 7671–7695ADSCrossRefGoogle Scholar
  3. Blanchard G. T., Lyons L. R., Samson J. C., Rich F. J. 1995, J. Geophys. Res. 100, 7855–7862ADSCrossRefGoogle Scholar
  4. Boakes P. D., Milan S. E., Abel G. A., Freeman M. P., Chisham G., Hubert B., Sotirelis T. 2008, Annales Geophysicae 26, 2759–2769ADSCrossRefGoogle Scholar
  5. Burch J. L., Reiff P. H., Menietti J. D., Heelis R. A., Hanson W. B., Shawhan S. D., Shelley E. G., Sugiura M., Wiemer D. R., Winningham J. D. 1985, J. Geophys. Res. 90, 1577–1593ADSCrossRefGoogle Scholar
  6. Chisham, G., Pinnock, M., Rodger, A. S. 2001, J. Geophys. Res. 106, 191–202ADSCrossRefGoogle Scholar
  7. Chisham G., Freeman M. P. 2004, Ann. Geophys. 22, 1187–1202ADSCrossRefGoogle Scholar
  8. Chisham G., Freeman M. P., Sotirelis T. 2004, Geophys. Res. Lett. 31, L02804ADSCrossRefGoogle Scholar
  9. Chisham G., Freeman M. P., Lam M. M., Abel G. A., Sotirelis T., Greenwald R. A., Lester M. 2005a, Ann. Geophys. 12, 3645–3654ADSCrossRefGoogle Scholar
  10. Chisham G., Freeman M. P., Sotirelis T., Greenwald R. A., Lester M., Villain J.-P. 2005b, Ann. Geophys. 23, 733–743ADSCrossRefGoogle Scholar
  11. Chisham G., Lester M., Milan S. E., Freeman M. P., Bristow W. A., Grocott A., McWilliams K. A., Ruohoniemi J. M., Yeoman T. K., Dyson P. L., Greenwald R. A., Kikuchi T., Pinnock M., Rash J. P. S., Sato N., Sofko G. J., Villain J.-P., Walker A. D. M. 2007, Surveys in Geophysics 28, 33–109ADSCrossRefGoogle Scholar
  12. Crooker N. U., 1986, Geophys. Res. Lett. 13, 1063–1066ADSCrossRefGoogle Scholar
  13. Crooker N. U. 1979, J. Geophys. Res. 84, 951–959ADSCrossRefGoogle Scholar
  14. Dungey, J. W. 1961, Phys. Rev. Lett. 6, 47–48ADSCrossRefGoogle Scholar
  15. Evans L. C., Stone, E. C. 1972, J. Geophys. Res. 77, 5580–5584ADSCrossRefGoogle Scholar
  16. Fenrich F. R., Luhmann J. G., Fedder, J. A., Slinker S. P., Russell C. T. 2001, J. Geophys. Res. 106, 18789–18802ADSCrossRefGoogle Scholar
  17. Greenwald R. A., Baker K. B., Ruohoniemi J. M., Dudeney J. R., Pinnock M., Mattin N., Leonard J. M., Lepping R. P. 1990, J. Geophys. Res. 95, 8057–8072ADSCrossRefGoogle Scholar
  18. Greenwald R. A., Baker K. B., Dudeney J. R., Pinnock M., Jones T. B., Thomas E. C., Villain J.-P., Cerisier J.-C., Senior C., Hanuise C., Hunsucker R. D., Sofko G., Koehler J., Nielsen E., Pellinen R., Walker A. D. M., Sato N., Yamagishi, H. 1995, Space Sci. Rev. 71, 761–796ADSCrossRefGoogle Scholar
  19. Heppner J. P., Maynard N. C. 1987, J. Geophys. Res. 92:4467–4489ADSCrossRefGoogle Scholar
  20. Lester M., Milan S. E., Besser V., Smith, R. 2001, Ann. Geophys. 19, 327–339ADSCrossRefGoogle Scholar
  21. Lester, M., Chapman, P. J., Cowley, S. W. H., Crooks, S. J., Davies, J. A., Hamadyk, P., McWilliams, K. A., Milan, S. E., Parsons, M. J., Payne, D. B., Thomas, E. C., Thornhill, J. D., Wade, N. M., Yeoman, T. K., Barnes, R. J. 2004, Ann. Geophys. 22, 459–473.  https://doi.org/10.5194/angeo-22-459-2004
  22. Lockwood M., Cowley S. W. H., Freeman M. P. 1990, J. Geophys. Res. 95, 7961–7972ADSCrossRefGoogle Scholar
  23. Lockwood M., Cowley S. W. H. 1999, J. Geophys. Res. 104, 4387–4391ADSCrossRefGoogle Scholar
  24. Lockwood M., Carlson Jr. H. C., Sandholt P. E. 1993, J. Geophys. Res. 98, 15,571–15,587ADSCrossRefGoogle Scholar
  25. Longden N., Chisham G., Freeman M. P., Abel G. A., Sotirelis T. 2010, Ann. Geophys. 28, 1659–1678ADSCrossRefGoogle Scholar
  26. Lu G., Richmond A. D., Emery B. A., Reiff P. H, de la Beaujardiere O., Rich F. J., Denig W. F., Kroehl H. W., Lyons L. R., Ruohoniemi J. M., Friis-Christensen E., Opgenoorth H., Persson M. A. L., Lepping R. P., Rodger A. S., Hughes T., McEwin A, Dennis S., Morris R., Burns G., Tomlinson L. 1994, J. Geophys. Res. 99, 6491–6510ADSCrossRefGoogle Scholar
  27. Mende S. B., Heetderks H., Frey H. U., Lampton M., Geller S. P., Habraken S., Renotte E., Jamar C., Rochus P., Spann J., Fuselier S. A., Gerard J.-C., Gladstone R., Murphree S., Cogger L. 2000a, Space Sci. Rev. 91, 243–270ADSCrossRefGoogle Scholar
  28. Mende S. B., Heetderks H., Frey H. U., Stock J. M., Lampton M., Geller S. P., Abiad R., Siegmund O. H. W., Habraken S., Renotte E., Jamar C., Rochus P., Gerard J.-C., Sigler R., Lauche H. 2000b, Space Sci. Rev. 91, 287–318ADSCrossRefGoogle Scholar
  29. Newell P. T., Meng, C. I. 1992, Geophys. Res. Lett. 19, 609–612ADSCrossRefGoogle Scholar
  30. Newell P. T., Ruohoniemi J. M., Meng C.-I. 2004, J. Geophys. Res. 109, A10206ADSCrossRefGoogle Scholar
  31. Ponomarenko P. V., Waters C. L. 2003, Geophys. Res. Lett. 30:1122ADSCrossRefGoogle Scholar
  32. Reiff P. H., Burch J. L. 1985, J. Geophys. Res. 90, 1595–1609ADSCrossRefGoogle Scholar
  33. Ridley A. J, Lu G., Clauer C. R., Papitashvili V. O. 1998, J. Geophys. Res. 103, 4023–4039ADSCrossRefGoogle Scholar
  34. Ruohoniemi J. M., Greenwald R. A. 1995, Geophys. Res. Lett., 22, 1121–1124ADSCrossRefGoogle Scholar
  35. Ruohoniemi J. M., Greenwald R. A. 1996, J. Geophys. Res. 101, 21,743–21,763ADSCrossRefGoogle Scholar
  36. Ruohoniemi J. M., Baker, K. B. 1998, J. Geophys. Res. 103, 20,797–20,811ADSCrossRefGoogle Scholar
  37. Schiffler A., Sofko G., Newell P. T., Greenwald R. A. 1997, Geophys. Res. Lett. 24, 3149–3152ADSCrossRefGoogle Scholar
  38. Simon S. G., Rhuohoniemi, J. M. 2000, J. Geophys. Res. 105, 23,005–23,014ADSCrossRefGoogle Scholar
  39. Siscoe G. L. and Huang T. S. 1985, J. Geophys. Res. 90, 543–547ADSCrossRefGoogle Scholar
  40. Sonnerup, B. U. O., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russell, C. T. 1981, J. Geophys. Res., 86, 10,049–10,067Google Scholar
  41. Sotirelis T., Ruohoniemi J. M., Barnes R. J., Newell P. T., Greenwald R. A., Skura J. P., Meng C.-I. 2005, J. Geophys. Res. 110, A06302ADSCrossRefGoogle Scholar
  42. Superdarn 2014. http://superdarn.org
  43. Villain, J-P., Andre R., Pinnock M., Greenwald, R. A., Hanuise, C. 2002, Ann. Geophys. 20, 1769–1781ADSCrossRefGoogle Scholar
  44. Wild J. A., Milan S. E., Owen C. J., Bosqued J. M., Lester M., Wright D. M., Frey H., Carlson C. W., Fazakerley A. N., Rème H. 2004, Ann. Geophys. 22, 3625–3639ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Physical SciencesIndependent UniversityDhakaBangladesh
  2. 2.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations