Existence of wormhole solutions and energy conditions in f(RT) gravity

  • M. Z. Bhatti
  • Z. YousafEmail author
  • M. Ilyas


This paper is devoted to investigate the spherically symmetric wormhole models in f(RT) gravity, where T and R are trace of stress energy tensor and the Ricci scalar, respectively. In this context, we discuss three distinct cases of fluid distributions viz, anisotropic, barotropic and isotropic matter contents. After considering the exponential f(RT) model, the behavior of energy conditions are analyzed that will help us to explore the general conditions for wormhole geometries in this gravity. It is inferred that the usual matter in the throat could obey the energy conditions but the gravitational field emerging from higher order terms of modified gravity favor the existence of the non-standard geometries of wormholes. The stability as well as the existence of wormholes are also analyzed in this theory.


Gravitation relativistic fluids self-gravitating systems 


  1. Alvarenga, F. G., Houndjo M. J. S., Monwanou, A. V. Orou, J. B. C. 2013, J. Mod. Phys. 4, 130CrossRefGoogle Scholar
  2. Arellano, A. V. B., Lobo F. S. N. 2006, Class. Quantum Grav. 23, 5811.ADSCrossRefGoogle Scholar
  3. Astasheok, A. V., Capozzielli, S., Odintsov, S. D. 2013, J. Cosmol. Astropart. Phys. 12, 040ADSCrossRefGoogle Scholar
  4. Azizi, T. 2013, Int. J. Theor. Phys. 52, 3486CrossRefGoogle Scholar
  5. Bejarano, C., Lobo, F. S. N., Olmo, G. J., Garcia, D. R. 2017, Eur. Phys. J. C 77, 776ADSCrossRefGoogle Scholar
  6. Bhatti, M. Z. 2016, Eur. Phys. J. Plus 131, 428CrossRefGoogle Scholar
  7. Bhatti, M. Z., Yousaf, Z. 2016, Eur. Phys. J. C 76, 219. [arXiv:1604.01395 [gr-qc]]
  8. Bhatti, M. Z., Yousaf, Z. 2017, Int. J. Mod. Phys. D 26, 1750029ADSCrossRefGoogle Scholar
  9. Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., Olmo, G. J. 2012, Phys. Rev. D 86, 127504ADSCrossRefGoogle Scholar
  10. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C. 2012, Phys. Rep. 513, 1ADSMathSciNetCrossRefGoogle Scholar
  11. Fukutaka, H., Ghoroku, K., Tanaka, K. 1989, Phys. Lett. B 222, 191ADSCrossRefGoogle Scholar
  12. Harko, T., Lobo, F. S. N., Nojiri, S., Odintsov, S. D. 2011, Phys. Rev. D 84, 024020ADSCrossRefGoogle Scholar
  13. Harko, T., Lobo, F. S. N., Mak, M. K., Sushkov, S. V. 2013, Phys. Rev. D 87, 067504ADSCrossRefGoogle Scholar
  14. Jamil, M., Momeni, D., Myrzakulov, R. 2013, Eur. Phys. J. C 73, 2267ADSCrossRefGoogle Scholar
  15. Lobo F. S. N., Oliveira, M. A. 2009, Phys. Rev. D 80, 104012ADSMathSciNetCrossRefGoogle Scholar
  16. Mazharimousavi, S. H., Halilsoy, M. 2016, Mod. Phys. Lett. A 31, 1650192ADSCrossRefGoogle Scholar
  17. Mehdizadeh, M. R., Ziaie, A. H. 2017, Phys. Rev. D 95, 064049ADSMathSciNetCrossRefGoogle Scholar
  18. Moraes, P. H. R. S., Sahoo, P. K. 2017a, Eur. Phys. J. C 77, 480ADSCrossRefGoogle Scholar
  19. Moraes, P. H. R. S., Sahoo, P. K. 2017b, Rev. D 96, 044038CrossRefGoogle Scholar
  20. Moraes, P. H. R. S., Sahoo, P. K., Ribeiro, G., Correa, R. A. C. arXiv:1712.07569 [gr-qc]
  21. Morris, M. S., Thorne, K. S. 1988, Am. J. Phys. 56, 395ADSCrossRefGoogle Scholar
  22. Morris, M. S., Thorne, K. S., Yurtsever, U. 1988, Phys. Rev. Lett. 61, 1446ADSCrossRefGoogle Scholar
  23. Sahoo, P. K., Sahoo, P., Bishi, B. K. 2017, Int. J. Geom. Meth. Mod. Phys. 14, 1750097CrossRefGoogle Scholar
  24. Singh, C. P., Singh, V. 2014, Gen. Relativ. Gravit. 46, 1696ADSCrossRefGoogle Scholar
  25. Yousaf, Z. 2017a, Eur. Phys. J. Plus 132, 71CrossRefGoogle Scholar
  26. Yousaf, Z. 2017b, Eur. Phys. J. Plus 132, 276.CrossRefGoogle Scholar
  27. Yousaf, Z., Bamba, K., Bhatti, M. Z. 2016, Phys. Rev. D 93, 124048ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Centre for High Energy PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations