Long-term ultraviolet variability of Seyfert galaxies
Abstract
Flux variability is one of the defining characteristics of Seyfert galaxies, a class of active galactic nuclei (AGN). Although these variations are observed over a wide range of wavelengths, results on their flux variability characteristics in the ultraviolet (UV) band are very limited. We present here the long-term UV flux variability characteristics of a sample of fourteen Seyfert galaxies using data from the International Ultraviolet Explorer acquired between 1978 and 1995. We found that all the sources showed flux variations with no statistically significant differences in the amplitude of UV flux variation between shorter and longer wavelengths. Also, the flux variations between different near-UV (NUV, \(1850{-}3300\) Å) and far-UV (FUV, \(1150{-}2000\) Å) passbands in the rest frames of the objects are correlated with no time lag. The data show indications of (i) a mild negative correlation of UV variability with bolometric luminosity and (ii) weak positive correlation between UV variability and black hole mass. At FUV, about 50% of the sources show a strong correlation between spectral indices and flux variations with a hardening when brightening behaviour, while for the remaining sources the correlation is moderate. In NUV, the sources do show a harder spectrum when brighter, but the correlation is either weak or moderate.
Keywords
Active galaxies Seyferts variabilityNotes
Acknowledgements
We thank the anonymous referee for his/her critical comments that helped to improve the manuscript
References
- Alloin D. et al. 1995, A&A, 293, 293AADSGoogle Scholar
- Bentz M. C., Katz S. 2015, PASP, 127, 67ADSCrossRefGoogle Scholar
- Bessel M. S. 1979, PASP, 91, 589ADSCrossRefGoogle Scholar
- Cardelli J. A., Clayton G. C., Mathis J. S. 1989, ApJ, 345, 245ADSCrossRefGoogle Scholar
- Dunn J. P., Jackson B., Deo R. P. et al. 2006, PASP, 118, 572ADSCrossRefGoogle Scholar
- Edelson R. 1992, ApJ, 401, 516ADSCrossRefGoogle Scholar
- Edelson R. A., Saken J., Pike G. et al. 1991, ApJL, 372, L9ADSCrossRefGoogle Scholar
- Edelson R. A., Krolik J. H. 1988, ApJ, 333, 646ADSCrossRefGoogle Scholar
- Elvis M. et al. 1994, APJ Supplement Series, 95, 1Google Scholar
- Frank J., King A., Raine, D. J. 2002, in by Frank J., King A., Raine D., eds, Accretion Power in Astrophysics. Cambridge University Press, Cambridge, p. 398. ISBN 0521620538, February 2002Google Scholar
- Gaskell C. M., Peterson B. M. 1987, ApJS, 65, 1ADSCrossRefGoogle Scholar
- Gaskell C. M., Sparke L. S. 1986, ApJ, 305, 175ADSCrossRefGoogle Scholar
- Giveon U., Maoz D., Kapsi S., Netzer H., Smith P. S. 1999, MNRAS, 306, 637ADSCrossRefGoogle Scholar
- Greenhill L. J., Gwinn C. R. 1997, Ap&SS, 248, 261ADSCrossRefGoogle Scholar
- Lohfink A. M., Reynolds C. S., Vasudevan R., Mushotzky R. F., Miller N. A. 2014, Apj, 788, 10ADSCrossRefGoogle Scholar
- Lynden-Bell D. 1969, Nature, 223, 690ADSCrossRefGoogle Scholar
- Meusinge H., Weiss V. 2013, A&A, 560, A104ADSCrossRefGoogle Scholar
- Paltani S., Courvoisier T. J.-L. 1994, A&A, 291, 74ADSGoogle Scholar
- Paltani S., Walter R. 1996, A&A, 312, 55ADSGoogle Scholar
- Paltani S., Courvoisier T. 1997, A&A, 323, 717ADSGoogle Scholar
- Peterson B. M., Wanders I., Horne K., Collier S., Alexander T., Kaspi S., Maoz D. 1998. The Publication of the Astronomical Society of the Pacific, 110(748), 660ADSCrossRefGoogle Scholar
- Rakshit S., Stalin C. S. 2017, ApJ, 842, 96ADSCrossRefGoogle Scholar
- Rees M. J. 1984, ARAA, 22, 471ADSCrossRefGoogle Scholar
- Rodriguez-Pascual et al., A&A, 72, 327Google Scholar
- Sakata Y., Morokuma T., Minezaki T. et al. 2011, ApJ, 731, 50ADSCrossRefGoogle Scholar
- Schlafly E. F., Finkbeiner D. P. 2011, ApJ, 737, 103ADSCrossRefGoogle Scholar
- Stalin C. S., Gopal Krishna, Sagar R., Wiita P. J. 2004, Journal of Astrophysics and Astronomy, 25, 1ADSCrossRefGoogle Scholar
- Ulrich M.-H., Maraschi L., Urry C. M. 1997, ARAA, 35, 445ADSCrossRefGoogle Scholar
- Vanden Berk D. E., Wilhite B. C., Kron R. G., Anderson S. F., Brunner R. J., Hall P. B., Ivezić Ž., Richards G. T., Schneider D. P., York D. G. 2004, ApJ, 601, 692Google Scholar
- Vaughan S., Edelson R., Warwick R. S., Uttley P. 2003, MNRAS, 345, 1271ADSCrossRefGoogle Scholar
- Wagner S. J., Witzel A. 1995, ARAA, 33, 163ADSCrossRefGoogle Scholar
- Wang X. Y., Dai Z. G., Lu, T. 2001 ApJ, 556, 1010ADSCrossRefGoogle Scholar
- Welsh B. Y., Wheatley J. M., Neil J. D. 2011, A&A, 527, A15ADSCrossRefGoogle Scholar
- Welsh W. F., Peterson B. M., Koratkar A. P., Korista K. T. 1998, ApJ, 509, 118ADSCrossRefGoogle Scholar
- Wilhite B. C., Vanden Berk D. E., Kron R. G., Schneider D. P., Pereyra N., Brunner R. J., Richards G. T., Brinkmann J. V. 2005, ApJ, 633, 638ADSCrossRefGoogle Scholar
- Wilhite B. C., Brunner R. J., Grier C. J., Schneider D. P., Vanden Berk D. E. 2008, MNRAS, 383, 1232ADSCrossRefGoogle Scholar
- Wold M., Brotherton M. S., Shang Z. 2007, MNRAS, 375, 989ADSCrossRefGoogle Scholar
- Zhang X.-G., Feng L. 2017, MNRAS, 464, 2203ADSCrossRefGoogle Scholar
- Zuo W., Wu X.-B., Liu Y.-Q., Jiao C.-L. 2012, ApJ, 758, 104ADSCrossRefGoogle Scholar