Advertisement

Lightning black holes as unidentified TeV sources

  • Kouichi HirotaniEmail author
  • Hung-Yi Pu
  • Satoki Matsushita
Article

Abstract

Imaging Atmospheric Cherenkov Telescopes have revealed more than 100 TeV sources along the galactic plane, around 45% of them remain unidentified. However, radio observations revealed that dense molecular clumps are associated with 67% of 18 unidentified TeV sources. In this paper, we propose that an electron–positron magnetospheric accelerator emits detectable TeV gamma-rays when a rapidly rotating black hole enters a gaseous cloud. Since the general-relativistic effect plays an essential role in this magnetospheric lepton accelerator scenario, the emissions take place in the direct vicinity of the event horizon, resulting in a point-like gamma-ray image. We demonstrate that their gamma-ray spectra have two peaks around 0.1 GeV and 0.1 TeV and that the accelerators become most luminous when the mass accretion rate becomes about 0.01% of the Eddington accretion rate. We compare the results with alternative scenarios such as the cosmic-ray hadron scenario, which predicts an extended morphology of the gamma-ray image with a single power-law photon spectrum from GeV to 100 TeV.

Keywords

Black hole physics gamma-rays magnetic fields 

References

  1. Aharonian F. A., Atoyan A. M., Kifune T. 1997, MNRAS, 291, 162ADSCrossRefGoogle Scholar
  2. Beskin V. S., Istomin Ya. N., Parev V. 1992, Sov. Astron., 36(6), 642ADSGoogle Scholar
  3. Black J. H., Fazio G. G. 1973, ApJ, 185, L7ADSCrossRefGoogle Scholar
  4. Blandford R. D., Znajek R. L., 1977, MNRAS, 179, 433ADSCrossRefGoogle Scholar
  5. Blandford R. D., Eichler D. 1987, Phys. Rep., 154, 1ADSCrossRefGoogle Scholar
  6. Bondi H., Hoyle F. 1944, MNRAS, 104, 273ADSCrossRefGoogle Scholar
  7. Broderick A. E., Tchekhovskoy A. 2015, 809, 97Google Scholar
  8. Bosch-Ramon, Romero G. E., Araudo A. T., Paredes J. M. 2010, Astron. Astroph., 511, 8Google Scholar
  9. Boyer R. H., Lindquist R. W. 1967, J. Math. Phys., 265, 281Google Scholar
  10. Cheng K. S., Ho C., Ruderman M. 1986, Astroph. J., 300, 500ADSCrossRefGoogle Scholar
  11. Cheng K. S., Ruderman M., Zhang L. 2000, Astroph. J., 537, 964ADSCrossRefGoogle Scholar
  12. Chiang J., Romani R. W. 1992, Astroph. J., 400, 629ADSCrossRefGoogle Scholar
  13. Corral-Santana J. M., Casares J., Munoz-Daias T., Bauer F. E., Martinez-Pairs I. G., Russel D. M. 2016, Astron. Astroph., 587Google Scholar
  14. De Ona Wilhelmi E. 2009, AIP Conf. Ser., 1112, pp. 16–22Google Scholar
  15. de Wilt P., Rowell G., Walsh A. J., Burton M., Rathborne J., Fukui Y., Kawamura A., Aharonian F. 2017, MNRAS 468, 2093ADSCrossRefGoogle Scholar
  16. Ginzburg V. L., Syrovatskii S. I. 1964, 18. The Origin of Cosmic Rays, Maccmillan, New YorkGoogle Scholar
  17. Globus N., Levinson A. 2014, Astroph. J., 796, 26ADSCrossRefGoogle Scholar
  18. Goldreich P., Julian W. H. 1969, ApJ, 157, 869ADSCrossRefGoogle Scholar
  19. Hillas A. M., Akerlof C. W., Biller S. D., Buckley J. H., Carter-Lewis D. A., Catanese M., Cawley M. F., Fegan D. J. et al. 1998, Astroph. J., 503, 744ADSCrossRefGoogle Scholar
  20. Hirotani K., Okamoto I. 1998, Astroph. J., 497, 563ADSCrossRefGoogle Scholar
  21. Hirotani K., Shibata S. 1999, MNRAS, 308, 54ADSCrossRefGoogle Scholar
  22. Hirotani K. 2006, Mod. Phys. Lett. A (Brief Review), 21, 1319ADSCrossRefGoogle Scholar
  23. Hirotani K. 2013, Astroph. J., 766, 98ADSCrossRefGoogle Scholar
  24. Hirotani K., Pu H.-Y. 2016, Astroph. J., 818, 50ADSCrossRefGoogle Scholar
  25. Hirotani K. et al. 2016, Astroph. J., 833, 142ADSCrossRefGoogle Scholar
  26. Hirotani K., Pu H.-Y., Lin L. C.-C., Kong A. K. H., Matsushita S., Asada K., Chang H.-K., Tam P.-H. T. 2017, ApJ, 845, 77ADSCrossRefGoogle Scholar
  27. Hirotani K., Pu H.-Y., Outmani S., Huang H., Kim D., Song Y., Matsushita S., Kong A. K. H. 2018, submitted to ApJGoogle Scholar
  28. Ichimaru S. 1979, Astroph. J., 214, 840ADSCrossRefGoogle Scholar
  29. Issa M. R., Wolfendale A. W. 1981, Nature 292, 430ADSCrossRefGoogle Scholar
  30. Kerr R. P. 1963, PRP, 11, 237Google Scholar
  31. Komissarov S. S., McKinney J. C. 2007, MNRAS, 377, L49ADSCrossRefGoogle Scholar
  32. Levinson A., Rieger F. 2011, Astroph. J., 730, 123ADSCrossRefGoogle Scholar
  33. Levinson A., Segev N. 2017, PRD, 96, id.123006Google Scholar
  34. Mahadevan R. 1997, Astroph. J., 477, 585ADSCrossRefGoogle Scholar
  35. McKinney J. C., Tchekhovskoy A., Blandford R. R. 2012, MNRAS, 423, 3083ADSCrossRefGoogle Scholar
  36. Mestel L. 1971, Nature, 233, 149ADSGoogle Scholar
  37. Narayan R., Yi I. 1994, Astroph. J., 428, L13ADSCrossRefGoogle Scholar
  38. Neronov A., Aharonian F. A. 2007, Astroph. J., 671, 85ADSCrossRefGoogle Scholar
  39. Romani R. 1996, Astroph. J., 470, 469ADSCrossRefGoogle Scholar
  40. Song Y., Pu H.-Y., Hirotani K., Matsushita S., Kong A. K. H., Chang H.-K. 2017, MNRAS, 471, L135ADSCrossRefGoogle Scholar
  41. Tchekhovskoy A., Narayan R., McKinney J. C. 2010, Astroph. J., 711, 50ADSCrossRefGoogle Scholar
  42. Tetarenko B. E., Sivakoff G. R., Heinke C. O., Glandstone J. C. 2016, Astroph. J. Suppl., 222, 15ADSCrossRefGoogle Scholar
  43. van der Swaluw E., Achterberg A., Gallant Y. A., Toth G. 2001, Astron. Astroph., 380, 309ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Kouichi Hirotani
    • 1
    Email author
  • Hung-Yi Pu
    • 2
  • Satoki Matsushita
    • 1
  1. 1.Academia Sinica Institute of Astronomy and AstrophysicsTaipeiTaiwan, Republic of China
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations