Planck absolute entropy of a rotating BTZ black hole

Article
  • 31 Downloads

Abstract

In this paper, the Planck absolute entropy and the Bekenstein–Smarr formula of the rotating Banados–Teitelboim–Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

Keywords

Planck absolute entropy black hole thermodynamics Bekenstein–Smarr formula. 

References

  1. Ayon-Beato E., Martinez C., Zanelli J. 2004, Phys. Rev. D, 70, 044027ADSMathSciNetCrossRefGoogle Scholar
  2. Banados M. et al., 1993, Phys. Rev. D, 48, 1506ADSMathSciNetCrossRefGoogle Scholar
  3. Banados M., Teiteiboim C., Zanelli J. 1992, Phys. Rev. lett., 69, 1849, hep-th/9204099ADSMathSciNetCrossRefGoogle Scholar
  4. Banados M., Henneaux M.,Teiteiboim C., Zanelli J. 1993, Phys. Rev. D, 48, 1506, gr-qc/9302012ADSMathSciNetCrossRefGoogle Scholar
  5. Bardeen J. M., Carter B., Hawking S. W. 1973, Commun. Math. Phys., 31, 161–170ADSCrossRefGoogle Scholar
  6. Bekenstein J. 1972, Ph. D Thesis, Princeton UniversityGoogle Scholar
  7. Carlip S. 1998, Quantum Gravity in (2 + 1) Dimensions, Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  8. Christodoulou D., Ruffini R. 1971, Phys. Rev. D, 4, 3552ADSCrossRefGoogle Scholar
  9. Clement G. 1993, Class. Quantum Grav., 10, 49ADSCrossRefGoogle Scholar
  10. Clement G. 1996, Phys. Lett. B, 367, 70, gr-qc/9510025ADSMathSciNetCrossRefGoogle Scholar
  11. Frolov V. P., Page D. N. 1993, Phys. Rev. Lett., 71, 3902ADSCrossRefGoogle Scholar
  12. Hawking S. W. 1972, Phys. Rev. Lett., 26, 1344ADSCrossRefGoogle Scholar
  13. Hawking S. W. 1975, Commun. Math. Phys., 43, 199ADSCrossRefGoogle Scholar
  14. Heusler M. 1996, Black Hole Uniqueness Theorems, Camberidge University Press, CambridgeCrossRefMATHGoogle Scholar
  15. Larranaga A. 2008, Commun. Theor. Phys., 50(6), 1341CrossRefGoogle Scholar
  16. Lee H., Kim S. W., Kim W. T. 1996, Phys. Rev. D, 54, 6559ADSMathSciNetCrossRefGoogle Scholar
  17. Lou Y., Q., Zhai X. 2009, Astrophys. Space Sci., 323(1), 17–40ADSCrossRefGoogle Scholar
  18. Martinez C., Teiteiboim C., Zanelli, J. 2000, Phys. Rev. D, 61, 104013, hep-th/9912259ADSMathSciNetCrossRefGoogle Scholar
  19. Penrose, Floyd 1971, Nature Physical Science, 229, 177ADSCrossRefGoogle Scholar
  20. Riaz S. M. J., Siddiqui, A. A. 2011, Gen. Relativ. Gravit., 43, 1167–1178ADSCrossRefGoogle Scholar
  21. Smarr L. 1973, Phys. Rev. Lett., 30, 71ADSCrossRefGoogle Scholar
  22. Unruh W. G., Wald, R. M. 1982, Phys. Rev. D, 25, 942ADSCrossRefGoogle Scholar
  23. Wald R. M. 1998, The “Nernst theorem” and black hole thermodynamics, preprintGoogle Scholar
  24. Wald R. M. 1994, Quantum Field Theory in Curved Space-Time and Blach Hole Thermodynamics, University of Shicago Press, ChicagoGoogle Scholar
  25. Wald R. M. 2001, Living Rev. Rel., 4, 6CrossRefGoogle Scholar
  26. Wu S. Q. 2005, Phys. Lett. B, 608, 251–257, gr-qc/0405029ADSMathSciNetCrossRefGoogle Scholar
  27. Zheng Z. 1999, Int. J. Theo. Phys., 38, 1539ADSCrossRefGoogle Scholar
  28. Zheng Z. 2006, Int. J. Theo. Phys., 45, 0651ADSGoogle Scholar
  29. Zheng Z., Jian-yang Z., Wen-biao L. 1999, Chinese Phys. Lett., 16(9), 698ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of MathematicsCOMSATS Institute of Information TechnologyWah CanttPakistan

Personalised recommendations