Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using Multi-Wavelength Data

  • Ananda Hota
  • C. Konar
  • C. S. Stalin
  • Sravani Vaddi
  • Pradeepta K. Mohanty
  • Pratik Dabhade
  • Sai Arun Dharmik Bhoga
  • Megha Rajoria
  • Sagar Sethi
Review

Abstract

We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny’s Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and companion galaxy interaction, radio galaxy bent by motion of the intra-filament medium in a Mpc-scale galaxy filament etc. are briefly presented as demonstration of its potential. Citizen-science has not only opened up a new way for astronomy research but also possibly the only promising way to extract maximum science out of the Big Data in the SKA-era. This possibly can convert the Big Data problem into a prospect. Citizen-science can contribute to the knowledge creation in never-seen-before speed and in approach. As it is based on internet, it can provide an equal opportunity of academic-growth to people even in the under-developed regions where we always need to put our optical and radio telescopes. This can liberate the research-activity of city-based research-institutes out of the four brick walls and alleviate various socio-economic and geo-political constraints on growth of citizens educated in undergraduate-level science but located in remote areas.

Keywords

Galaxies: active galaxies: evolution galaxies: individual: Speca galaxies: individual: NGC 3801 galaxies: individual: NGC 1482 galaxies: individual: NGC 6764 galaxies: jets galaxies: stellar content observations amateur astronomy crowd-sourcing citizen-science. 

References

  1. Aalto, S., Costagliola, F., Muller, S. et al. 2016, A&A, 590A, 73.ADSCrossRefGoogle Scholar
  2. Abdo, A. A., Ackermann, M., Ajello, M., Baldini, L. et al. 2009, ApJ, 707L, 142.ADSCrossRefGoogle Scholar
  3. Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S. et al. 2007, ApJS, 172, 634.ADSCrossRefGoogle Scholar
  4. Alatalo, K., Blitz, L., Young, L. M. et al. 2011, ApJ, 735, 88.ADSCrossRefGoogle Scholar
  5. Bagchi, J., Vivek, M., Vikram, V., Hota, A., Biju, K. G., Sirothia, S. K., Srianand, R., Gopal-Krishna Jacob, J. 2014, ApJ, 788, 174.ADSCrossRefGoogle Scholar
  6. Banfield, J. K., Wong, O. I., Willett, K. W. et al. 2015, MNRAS, 453, 2326.ADSCrossRefGoogle Scholar
  7. Banfield, J. K., Andernach, H., Kapińska, A. D. et al. 2016, MNRAS, 460, 2376.ADSCrossRefGoogle Scholar
  8. Barnes, J. E. Hernquist, L. E. 1991, ApJ, 370L, 65.ADSCrossRefGoogle Scholar
  9. Basu, A., Roy, S. Mitra, D. 2012, ApJ, 756, 141.ADSCrossRefGoogle Scholar
  10. Baum, S. A., O’Dea, C. P., Dallacassa, D, de Bruyn, A. G. Pedlar, A. 1993, ApJ, 419, 553.Google Scholar
  11. Becker, R. H., White, R. L. Helfand, D. J. 1995, ApJ, 450, 559.Google Scholar
  12. Blandford, R. D. Znajek, R. 1977, MNRAS, 179, 433.ADSCrossRefGoogle Scholar
  13. Brocksopp, C., Kaiser, C. R., Schoenmakers, A. P. de Bruyn, A. G. 2007, MNRAS, 382, 1019.Google Scholar
  14. Bruzual, G. Charlot, S. 2003, MNRAS, 344, 1000.ADSCrossRefGoogle Scholar
  15. Cardamone, C., Schawinski, K., Sarzi, M. et al. 2009, MNRAS, 399, 1191.ADSCrossRefGoogle Scholar
  16. Carilli, C. L., Holdaway, M. A., Ho, P. T. P. de Pree, C. G. 1992, ApJ, 399L, 59.Google Scholar
  17. Chakraborti, S., Yadav, N., Cardamone, C. Ray, A. 2012, ApJ, 746L, 6.ADSCrossRefGoogle Scholar
  18. Cicone, C., Maiolino, R., Sturm, E., Graciá-Carpio, J. et al. 2014, A&A, 562A, 21.ADSCrossRefGoogle Scholar
  19. Clemens, M. S., Scaife, A., Vega, O. Bressan, A. 2010, MNRAS, 405, 887.ADSGoogle Scholar
  20. Colbert, E. J. M., Baum, S. A., Gallimore, J. F., O’Dea, C. P. Christensen, J. A. 1996, ApJ, 467, 551.ADSCrossRefGoogle Scholar
  21. Condon, J. J. 1992, ARA&A, 30, 575.ADSCrossRefGoogle Scholar
  22. Condon, J. J., Huang, Z. -P., Yin, Q. F. Thuan, T. X. 1991, ApJ, 378, 65.ADSCrossRefGoogle Scholar
  23. Condon, J. J., Helou, G., Sanders, D. B. Soifer B. T. 1993, AJ, 105, 1730.ADSCrossRefGoogle Scholar
  24. Condon, J. J., Cotton, W. D. Greisen, E. W. 1998, AJ, 115, 169.CrossRefGoogle Scholar
  25. Croft, S., van Breugel, W., de Vries, W. et al. 2006, ApJ, 647, 1040.Google Scholar
  26. Croston, J. H., Kraft, R. P. Hardcastle, M. J. 2007, ApJ, 660, 191.ADSCrossRefGoogle Scholar
  27. Croton, D. J., Volker, S., White, S. D. M. et al. 2006, MNRAS, 365, 11.ADSCrossRefGoogle Scholar
  28. Croston, J. H., Hardcastle, M. J., Kharb, P., Kraft, R. P. Hota, A. 2008, ApJ, 688, 190.ADSCrossRefGoogle Scholar
  29. Edwards, L. O. V., Fadda, D. Frayer, D. T. 2010, ApJ, 724L, 143.ADSCrossRefGoogle Scholar
  30. Elmouttie, M., Haynes, R. F., Jones, K. L., Sadler, E. M. Ehle, M. 1998, MNRAS, 297, 1202.ADSCrossRefGoogle Scholar
  31. Emonts, B. H. C., De Breuck, C., Lehnert, M. D. et al. 2015, A&A, 584A, 99.ADSCrossRefGoogle Scholar
  32. Evans, D. A., Fong, W. -F., Hardcastle, M. J. et al. 2008, ApJ, 675, 1057.ADSCrossRefGoogle Scholar
  33. Fabian, A. C. 2012, ARA&A, 50, 455.ADSCrossRefGoogle Scholar
  34. Feruglio, C., Maiolino, R., Piconcelli, E. et al. 2010, A&A, 518L, 155.ADSCrossRefGoogle Scholar
  35. Gallimore, J. F., Axon, D. J., O’Dea, C. P., Baum, S. A. Pedlar, A. 2006, AJ, 32, 546.ADSCrossRefGoogle Scholar
  36. Giacintucci, S., O’Sullivan, E., Vrtilek, J. et al. 2011, ApJ, 732, 95.ADSCrossRefGoogle Scholar
  37. Giacintucci, S., O’Sullivan, E., Clarke, T. E. et al. 2012, ApJ, 755, 172.ADSCrossRefGoogle Scholar
  38. Heckman, T. M., Smith, E. P., Baum, S. A. et al. 1986, ApJ, 311, 526.ADSCrossRefGoogle Scholar
  39. Heckman, T. M., Armus, L. Miley, G. K. 1990, ApJS, 74, 833.ADSCrossRefGoogle Scholar
  40. Hopkins, P. F., Hernquist, L., Cox, T. J. et al. 2006, ApJS, 163, 1.ADSCrossRefGoogle Scholar
  41. Hopkins, P. F., Cox, T. J., Keres, D. Hernquist, L. 2008, ApJS, 175, 390.ADSCrossRefGoogle Scholar
  42. Hota, A., Lim, J., Ohyama, Y., Saikia, D. J., Dihn-v-Trung Croston, J. H. 2009, in ASP Conf. Ser. Vol. 407, edited by D. J. Saikia, D. A. Green, Y. Gupta and T. Venturi, The Low-Frequency Radio Universe. Astron. Soc. Pac., San Francisco, p. 104.Google Scholar
  43. Hota, A. Saikia, D. J. 2005, MNRAS, 356, 998.ADSCrossRefGoogle Scholar
  44. Hota, A. Saikia, D. J. 2006, MNRAS, 371, 945.ADSCrossRefGoogle Scholar
  45. Hota, A., Sirothia, S. K., Ohyama, Y., Konar, C., Kim, S, Rey, S. -C., Saikia, D. J., Croston, J. H. Matsushita, S. 2011, MNRAS, 417L, 36.ADSCrossRefGoogle Scholar
  46. Hota, A., Rey, S. -C., Kang, Y., Kim, S., Matsushita, S. Chung, J. 2012, MNRAS, 422L, 38.ADSCrossRefGoogle Scholar
  47. Hota, A., Croston, J. H., Ohyama, Y., Stalin, C. S., Hardcastle, M. J., Konar, C. et al. 2014, http://adsabs.harvard.edu/abs/2014arXiv1402.3674H.Google Scholar
  48. Hota, A., Espada, D., Matsushita, S., Sergio, M., Kotaro, K., Soo-Chang, R., Koichiro, N. et al. 2016, (in preparation).Google Scholar
  49. Hunik, D. Jamrozy, M. 2016, ApJ, 817L, 1.ADSCrossRefGoogle Scholar
  50. Intema, H. T., Jagannathan, P., Mooley, K. P. Frail, D. A. 2016, A&A,. http://adsabs.harvard.edu/abs/2016arXiv160304368I.
  51. Irwin, J. A. Saikia, D. J. 2003, MNRAS, 346, 977.ADSCrossRefGoogle Scholar
  52. Jain, A. K., Duin, R. P. W. Jianchang, M. 2000, IEEE Trans. Pattern Anal. Mach. Intel., 22 (1), 4–37.CrossRefGoogle Scholar
  53. Kaviraj, S., Schawinski, K., Silk, J. Shabala, S. S. 2011, MNRAS, 415, 3798.ADSCrossRefGoogle Scholar
  54. Keel, W. C., Chojnowski, S. D., Bennert, V. N. et al. 2012a, MNRAS, 420, 878.Google Scholar
  55. Keel, W. C., Lintott, C. J., Schawinski, K. et al. 2012b, AJ, 144, 66.Google Scholar
  56. Kharb, P., Hota, A., Croston, J. H., Hardcastle, M. J., O’Dea, C. P., Kraft, R. P., Axon, D. J. Robinson, A. 2010, ApJ, 723, 580.ADSCrossRefGoogle Scholar
  57. Kharb, P., Srivastava, S., Singh, V., Gallimore, J. F., Ishwara-Chandra, C. H. Hota, A. 2016, MNRAS, 459, 1310.ADSCrossRefGoogle Scholar
  58. Konar, C., Jamrozy, M., Saikia, D. J. Machalski, J. 2008, MNRAS, 383, 525.ADSCrossRefGoogle Scholar
  59. Konar, C., Hardcastle, M. J., Jamrozy, M. Croston, J. H. 2013, MNRAS, 430, 2137.ADSCrossRefGoogle Scholar
  60. Kormendy, J. Ho, L. C. 2013, ARA&A, 51, 511.ADSCrossRefGoogle Scholar
  61. Kormendy, J. Kennicutt, R. C. J. 2004, ARA&A, 42, 603.ADSCrossRefGoogle Scholar
  62. Kotilainen, J. K., Leon, T. J., Olguin-Iglesias, A. et al. 2016, ApJ,. http://adsabs.harvard.edu/abs/2016arXiv160902417K.
  63. Ledlow, M. J., Owen, F. N. Keel, W. C. 1998, ApJ, 495, 227.ADSCrossRefGoogle Scholar
  64. Leon, S., Eckart, A., Laine, S., Kotilainen, J. K., Schinnerer, E., Lee, S. -W., Krips, M., Reunanen, J. Scharwächter, J. 2007, A&A, 473, 747.ADSCrossRefGoogle Scholar
  65. Lintott, C. J., Schawinski, K., Keel, W., van Arkel, H. et al. 2009, MNRAS, 399, 129.Google Scholar
  66. Lonsdale, C. J., Lonsdale, C. J., Smith, H. E. Diamond, P. J. 2003, ApJ, 592, 804.ADSCrossRefGoogle Scholar
  67. Mao, M. Y., Owen, F., Duffin, R. et al. 2015, MNRAS, 446, 4176.ADSCrossRefGoogle Scholar
  68. Marshall, P. J., Lintott, C. J. Fletcher, L. N. 2015, ARA&A, 53, 247.ADSCrossRefGoogle Scholar
  69. Masters, K. L., Mosleh, M., Romer, A. K. et al. 2010, MNRAS, 405, 783.ADSGoogle Scholar
  70. McConnell, N. J., Ma, C. -P, Gebhardt, K., Wright, S. A., Murphy, J. D., Lauer, T. R., Graham, J. R. Richstone, D. O. 2011, Natur, 480, 215.ADSCrossRefGoogle Scholar
  71. McNamara, B. R., Wise, M. W., Nulsen, P. E. J. et al. 2001, ApJ, 562L, 149.ADSCrossRefGoogle Scholar
  72. Mulcahy, D. D., Mao, M. Y., Mitsuishi, I., Scaife, A. M. M., Clarke, A. O., Babazaki, Y., Kobayashi, H., Suganuma, R., Matsumoto, H. Tawara, Y. 2016, A&A, 595L, 8.ADSCrossRefGoogle Scholar
  73. Murgia, M., Parma, P., Mack, K. -H. et al. 2011, A&A, 526A, 148.ADSCrossRefGoogle Scholar
  74. Nesvadba, N. P. H., Lehnert, M. D., De Breuck, C., Gilbert, A. M. van Breugel, W. 2008, A&A, 491, 407.Google Scholar
  75. Nielsen, M. 2011, Reinventing Discovery, Princeton University Press.Google Scholar
  76. Omar, A. Dwarakanath, K. S. 2005, JApA, 26, 71O.ADSGoogle Scholar
  77. Oshlack, A. Y. K. N., Webster, R. L. Whiting, M. T. 2001, ApJ, 558, 578.ADSCrossRefGoogle Scholar
  78. Randall, S. W., Forman, W. R., Giacintucci, S. et al. 2011, ApJ, 726, 86.ADSCrossRefGoogle Scholar
  79. Reynolds, C. S. Begelman, M. C. 1997, ApJ, 487L, 135.ADSCrossRefGoogle Scholar
  80. Saikia, D. J. Jamrozy, M. 2009, BASI, 37, 63.ADSGoogle Scholar
  81. Sakamoto, K., Aalto, S., Combes, F., Evans, A. Peck, A. 2014, ApJ, 797, 90.ADSCrossRefGoogle Scholar
  82. Sanders, D. B. Mirabel, I. F. 1996, ARA&A, 34, 749.ADSCrossRefGoogle Scholar
  83. Schawinski, K. et al. 2007, MNRAS, 382, 1415.ADSCrossRefGoogle Scholar
  84. Schawinski, K., Evans, D. A., Virani, S. et al. 2010, ApJ, 724L, 30.ADSCrossRefGoogle Scholar
  85. Schawinski, K., Urry, C. M., Simmons, B. D. et al. 2014, MNRAS, 440, 889.ADSCrossRefGoogle Scholar
  86. Seaquist, E. R. Odegard, N. 1991, ApJ, 369, 320.ADSCrossRefGoogle Scholar
  87. Shin, M. -S., Strauss, M. A. Tojeiro, R. 2011, MNRAS, 410, 1583.ADSGoogle Scholar
  88. Sikora, M., Stawarz, L. Lasota, J. P. 2007, ApJ, 658, 815.ADSCrossRefGoogle Scholar
  89. Singh, V., Ishwara-Chandra, C. H., Sievers, J., Wadadekar, Y., Hilton, M. Beelen, A. 2015, MNRAS, 454, 1556.ADSCrossRefGoogle Scholar
  90. Singh, V., Ishwara-Chandra, C. H., Kharb, P., Srivastava, S. Janardhan, P. 2016, ApJ, 826, 132.ADSCrossRefGoogle Scholar
  91. Springel, V., Di Matteo, T. Hernquist, L. 2005, MNRAS, 361, 776.ADSCrossRefGoogle Scholar
  92. Strickland, D. K. 2007, MNRAS, 376, 523.ADSCrossRefGoogle Scholar
  93. Sturm, E., González-Alfonso, E., Veilleux, S. et al. 2011, ApJ, 733L, 16.ADSCrossRefGoogle Scholar
  94. Tamhane, P., Wadadekar, Y., Basu, A., Singh, V., Ishwara-Chandra, C. H., Beelen, A. Sirothia, S. 2015, MNRAS, 453, 2438.ADSCrossRefGoogle Scholar
  95. Vaddi, S., O’Dea, C. P., Baum, S. A. et al. 2016, ApJ, 818, 182.ADSCrossRefGoogle Scholar
  96. Veilleux, S. Rupke, D. S. 2002, ApJ, 565L, 63.ADSCrossRefGoogle Scholar
  97. Veilleux, S., Cecil, G. Bland-Hawthorn, J. 2005, ARA&A, 43, 769.ADSCrossRefGoogle Scholar
  98. Wang, F., Wu, X. -B., Fan, X. et al. 2015, ApJ, 807L, 9.ADSCrossRefGoogle Scholar
  99. Wilson, A. S. Colbert, E. J. M. 1995, ApJ, 438, 62.ADSCrossRefGoogle Scholar
  100. York, D. G., Adelman, J., Anderson, J. E. J. et al. 2000, AJ, 120, 1579.ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • Ananda Hota
    • 1
    • 2
  • C. Konar
    • 2
    • 3
  • C. S. Stalin
    • 4
  • Sravani Vaddi
    • 5
  • Pradeepta K. Mohanty
    • 2
  • Pratik Dabhade
    • 2
  • Sai Arun Dharmik Bhoga
    • 2
  • Megha Rajoria
    • 2
  • Sagar Sethi
    • 2
  1. 1.#eAstroLabUM-DAE Centre for Excellence in Basic SciencesMumbaiIndia
  2. 2.RAD@home Astronomy CollaboratoryMumbaiIndia
  3. 3.Amity Institute of Applied SciencesAmity University Uttar PradeshNoidaIndia
  4. 4.Indian Institute of AstrophysicsBangaloreIndia
  5. 5.National Centre for Radio AstrophysicsTata Institute of Fundamental ResearchPuneIndia

Personalised recommendations