Neutron Stars in the Light of Square Kilometre Array: Data, Statistics and Science

  • Mihir Arjunwadkar
  • Akanksha Kashikar
  • Manjari Bagchi


The Square Kilometre Array (SKA), when it becomes functional, is expected to enrich Neutron Star (NS) catalogues by at least an order of magnitude over their current state. This includes the discovery of new NS objects leading to better sampling of under-represented NS categories, precision measurements of intrinsic properties such as spin period and magnetic field, as also data on related phenomena such as microstructure, nulling, glitching, etc. This will present a unique opportunity to seek answers to interesting and fundamental questions about the extreme physics underlying these exotic objects in the Universe. In this paper, we first present a meta-analysis (from a methodological viewpoint) of statistical analyses performed using existing NS data, with a two-fold goal. First, this should bring out how statistical models and methods are shaped and dictated by the science problem being addressed. Second, it is hoped that these analyses will provide useful starting points for deeper analyses involving richer data from SKA whenever it becomes available. We also describe a few other areas of NS science which we believe will benefit from SKA which are of interest to the Indian NS community.

Key words

Square Kilometre Array (SKA) neutron stars statistical science statistical methods data modeling and analysis. 



The first author, MA would like to thank Sushan Konar and Dipanjan Mitra for discussions, encouragement and critical comments. We would like to thank the anonymous referee for a thorough and meticulous review and for useful suggestions that have helped improve this paper. We would like to thank Cristóbal Espinoza for drawing our attention to the fact that no plan for regular monitoring of young glitching pulsars using SKA is specified at present. Such a plan is desirable for obtaining more and better glitch data, which will in turn enable researchers to apply and improve upon the methods discussed in this paper. This will also help understand many other properties of young pulsars; see Watts et al. (arXiv:1501.00042) for details.


  1. Airoldi, E. M., Blei, D. M., Erosheva, E. A. Fienberg, S. E. 2014, Introduction to mixed membership models and methods, in: E. M. Airoldi, D. M. Blei, E. A. Erosheva and S. E. Fienberg, editors, Handbook of Mixed Membership Models and their Applications, pages 3–13, CRC Press.Google Scholar
  2. Arjunwadkar, M., Rajwade, K. Gupta, Y. 2016, Inferring pulsar null fraction using Gaussian mixtures, under preparation.Google Scholar
  3. Aschwanden, M. 2011, Self-Organized Criticality in Astrophysics: The Statistics of Nonlinear Processes in the Universe, Springer.CrossRefzbMATHGoogle Scholar
  4. Backer, D. C. 1970, Pulsar nulling phenomena, Nature, 228, 42–43.ADSCrossRefGoogle Scholar
  5. Bagchi, M. 2013, Luminosities of radio pulsars, Int. J. Mod. Phys. D, 22 (10), 1330021.ADSCrossRefGoogle Scholar
  6. Bagchi, M., Lorimer, D. R. Chennamangalam, J. 2011, Luminosities of recycled radio pulsars in globular clusters, Mon. Not. R. Astron. Soc., 418 (1), 477–489.ADSCrossRefGoogle Scholar
  7. Bates, S. D., Lorimer, D. R. Verbiest, J. P. W. 2013, The pulsar spectral index distribution, Mon. Not. R. Astron. Soc., 431 (2), 1352–1358.ADSCrossRefGoogle Scholar
  8. Burnham, K. Anderson, D. 2002, Model Selection and Multimodel Inference, Springer , New York.zbMATHGoogle Scholar
  9. Chennamangalam, J. Lorimer, D. R. 2014, The galactic centre pulsar population, Mon. Not. R. Astron. Soc.: Letters, 440 (1), L86–L90.ADSCrossRefGoogle Scholar
  10. Chennamangalam, J., Lorimer, D. R., Mandel, I. Bagchi, M. 2013, Constraining the luminosity function parameters and population size of radio pulsars in globular clusters, Mon. Not. R. Astron. Soc., 431 (1), 874–881.ADSCrossRefGoogle Scholar
  11. Craft, H. D., Comella, J. M. Drake, F. D. 1968, Submillisecond radio intensity variations in pulsars, Nature, 218, 1122–1124.ADSCrossRefGoogle Scholar
  12. Efron, B. 2011, Foreword, in: International Encyclopedia of Statistical Science, edited by M. Lovric, pages vii–x, Springer-Verlag.Google Scholar
  13. Ellis, J. A. 2013, A Bayesian analysis pipeline for continuous GW sources in the PTA band, Class. Quantum Gravit., 30 (22), 224004.ADSMathSciNetCrossRefGoogle Scholar
  14. Espinoza, C. M., Lyne, A. G., Stappers, B. W. Kramer, M. 2011, A study of 315 glitches in the rotation of 102 pulsars, Mon. Not. R. Astron. Soc., 414, 1679–1704.ADSCrossRefGoogle Scholar
  15. Faucher-Giguère, C. -A. Kaspi, V. M. 2006, Birth and evolution of isolated radio pulsars, Astrophys. J., 643 (1), 332.ADSCrossRefGoogle Scholar
  16. Fraley, C. Raftery, A. E. 2002, Model-based clustering, discriminant analysis, and density estimation, J. Amer. Stat. Assoc., 97, 611–631.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Gregory, P. C. 2005, Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support, Cambridge University Press.CrossRefzbMATHGoogle Scholar
  18. Hall, P. York, M. 2001, On the calibration of silverman’s test for multimodality, Statistica Sinica, 11, 515–536.MathSciNetzbMATHGoogle Scholar
  19. Hartigan, J. Hartigan, P. 1985, The dip test of unimodality, Ann. Statistics, 13, 70–84.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Hastie, T., Tibshirani, R. Friedman, J. 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, second edition.CrossRefzbMATHGoogle Scholar
  21. Holzmann, H. Vollmer, S. 2008, A likelihood ratio test for bimodality in two-component mixtures with application to regional income distribution in the EU, Advances in Statistical Analysis, 92 (1), 57–69.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Kashikar, A., Konar, S. Arjunwadkar, M. 2016, Agnostic clustering of neutron star data suggests multiple populations, in progress.Google Scholar
  23. Keane, E., Bhattacharyya, B., Kramer, M., Stappers, B., Keane, E. F., Bhattacharyya, B., Kramer, M., Stappers, B. W., Bates, S. D., Burgay, M., Chatterjee, S., Champion, D. J., Eatough, R. P., Hessels, J. W. T., Janssen, G., Lee, K. J., van Leeuwen, J., Margueron, J., Oertel, M., Possenti, A., Ransom, S., Theureau, G. Torne, P. 2015, A Cosmic Census of Radio Pulsars with the SKA, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 40.Google Scholar
  24. Kijak, J., Gupta, Y. Krzeszowski, K. 2007, Turn-over in pulsar spectra around 1 Ghz, Astron. Astrophys., 462, 699–702.ADSCrossRefGoogle Scholar
  25. Kim, C., Perera, B. B. P. McLaughlin, M. A. 2015, Implications of PSR j0737–3039b for the galactic NS–NS binary merger rate, Mon. Not. R. Astron. Soc., 448 (1), 928–938.ADSCrossRefGoogle Scholar
  26. Konar, S. Arjunwadkar, M. 2014, Glitch statistics of radio pulsars: Multiple populations, arXiv:1402.1594.Google Scholar
  27. Konar, S. Arjunwadkar, M. 2015, Radio pulsars glitches: A statistical study, in preparation.Google Scholar
  28. Lentati, L., Alexander, P., Hobson, M. P., Feroz, F., van Haasteren, R., Lee, K. J. Shannon, R. M. 2014, TEMPONEST: a Bayesian approach to pulsar timing analysis, Mon. Not. R. Astron. Soc., 437, 3004–3023.ADSCrossRefGoogle Scholar
  29. Lorimer, D. R., Bailes, M., Dewey, R. J. Harrison, P. A. 1993, Pulsar statistics: the birthrate and initial spin periods of radio pulsars, Mon. Not. R. Astron. Soc., 263 (2), 403–415.ADSCrossRefGoogle Scholar
  30. Malofeev, V. M., Gil, J. A., Jessner, A., Malov, I. F., Seiradakis, J. H., Sieber, W. Wielebinski, R. 1994, Spectra of 45 pulsars, Astron. Astrophys., 285.Google Scholar
  31. Manchester, R., Hobbs, G., Teoh, A. Hobbs, M. 2005, The Australia telescope national facility pulsar catalogue, Astrophys. J., 129 (4), 1993–2006.ADSGoogle Scholar
  32. McLachlan, G. Peel, D. 2000, Finite Mixture Models, Wiley, New York.CrossRefzbMATHGoogle Scholar
  33. Mitra, D., Arjunwadkar, M. Rankin, J. M. 2015, Polarized quasiperiodic structures in pulsar radio emission reflect temporal modulations of non-stationary plasma flow, Astrophys. J., 806 (2), 236.ADSCrossRefGoogle Scholar
  34. Mitra, D., Rankin, J. M. Arjunwadkar, M. 2016, Core and conal component analysis of pulsar B1933+16 — Investigation of the segregated modes, Mon. Not. R. Astron. Soc., to be published.Google Scholar
  35. Rajwade, K., Arjunwadkar, M., Gupta, Y. Kumar, U. 2016, Probing nulling in millisecond pulsars, under preparation.Google Scholar
  36. Ridley, J. P., Crawford, F., Lorimer, D. R., Bailey, S. R., Madden, J. H., Anella, R. Chennamangalam, J. 2013, Eight new radio pulsars in the large magellanic cloud, Mon. Not. R. Astron. Soc., 433 (1), 138–146.ADSCrossRefGoogle Scholar
  37. Ritchings, R. 1976, Pulsar single pulse energy measurements and pulse nulling, Mon. Not. R. Astron. Soc., 176, 249–263.ADSCrossRefGoogle Scholar
  38. Silverman, B. 1981, Using kernel density estimates to investigate multimodality, J. R. Statistical Soc., Series B, 43, 97–99.MathSciNetGoogle Scholar
  39. Swarup, G., Ananthakrishnan, S., Kapahi, V. K., Rao, A. P., Subrahmanya, C. R. Kulkarni, V. K. 1991, The giant metre-wave radio telescope, Current Science, 60 (2), 95–105.Google Scholar
  40. Taylor, S., Ellis, J. Gair, J. 2014, Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays, Phys. Rev. D, 90 (10), 104028.ADSCrossRefGoogle Scholar
  41. Toscano, M., Bailes, M., Manchester, R. N. Sandhu, J. S. 1998, Spectra of southern pulsars, Astrophys. J., 506 (2), 863.ADSCrossRefGoogle Scholar
  42. Verbiest, J. P. W., Lorimer, D. R. McLaughlin, M. A. 2010, Lutz-kelker bias in pulsar parallax measurements, Mon. Not. R. Astron. Soc., 405, 564–572.ADSGoogle Scholar
  43. Verbiest, J. P. W., Weisberg, J. M., Chael, A. A., Lee, K. J. Lorimer, D. R. 2012, On pulsar distance measurements and their uncertainties, Astrophys. J., 755, 39.ADSCrossRefGoogle Scholar
  44. Wall, J. V. Jenkins, C. R. 2003, Practical Statistics for Astronomers, Cambridge University Press.CrossRefGoogle Scholar
  45. Wasserman, L. 2004, All of Statistics, Springer, New York.CrossRefzbMATHGoogle Scholar
  46. Wasserman, L. 2006, All of Nonparametric Statistics, Springer, New York.zbMATHGoogle Scholar
  47. Woodbury, M. A., Clive, J. Garson, A. 1978, Mathematical typology: A grade of membership technique for obtaining disease definition, Computers and Biomedical Res., 11 (3), 277–298.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  1. 1.Centre for Modeling and SimulationSavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of StatisticsSavitribai Phule Pune UniversityPuneIndia
  3. 3.The Institute of Mathematical Sciences, HBNIChennaiIndia

Personalised recommendations