Advertisement

Clusters of Galaxies and the Cosmic Web with Square Kilometre Array

  • Ruta KaleEmail author
  • K. S. Dwarakanath
  • Dharam Vir Lal
  • Joydeep Bagchi
  • Surajit Paul
  • Siddharth Malu
  • Abhirup Datta
  • Viral Parekh
  • Prateek Sharma
  • Mamta Pandey-Pommier
Review

Abstract

The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev–Zel’dovich effect to probe the ICM pressure in addition to tracers such as lobes of head–tail radio sources. The SKA also opens prospects to detect the ‘off-state’ or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.

Keywords

Acceleration of particles radiation mechanisms: non-thermal galaxies: clusters: general large-scale structure of Universe radio continuum: general 

References

  1. Ackermann, M. et al. 2014, ApJ, 787, 18.ADSCrossRefGoogle Scholar
  2. Ackermann, M. et al. 2010, ApJ, 717, L71.ADSCrossRefGoogle Scholar
  3. Araya-Melo, P. A., Aragón-Calvo, M. A., Brüggen, M. Hoeft, M. 2012, MNRAS, 423, 2325.ADSCrossRefGoogle Scholar
  4. Bagchi, J., Enßlin, T. A., Miniati, F., Stalin, C. S., Singh, M., Raychaudhury, S. Humeshkar, N. B. 2002, ArXiv e-prints, 7, 249.Google Scholar
  5. Bagchi, J., Durret, F., Neto, G. B. L. Paul, S. 2006, Science, 314, 791.ADSCrossRefGoogle Scholar
  6. Bagchi, J., Jacob, J., Gopal-Krishna Werner, N., Wadnerkar, N., Belapure, J. Kumbharkhane, A. C. 2009, MNRAS, 399, 601.ADSCrossRefGoogle Scholar
  7. Bagchi, J. et al. 2011, ApJ, 736, L8.ADSCrossRefGoogle Scholar
  8. Basu, K. 2012, MNRAS, 421, L112.ADSCrossRefGoogle Scholar
  9. Blanton, E. L., Gregg, M. D., Helfand, D. J., Becker, R. H. Leighly, K. M. 2001, AJ, 121, 2915.ADSCrossRefGoogle Scholar
  10. Blasi, P., Colafrancesco, S. 1999, Astropart. Phys., 12, 169.ADSCrossRefGoogle Scholar
  11. Bonafede, A., Feretti, L., Murgia, M., Govoni, F., Giovannini, G., Dallacasa, D., Dolag, K. Taylor, G. B. 2010, A&A, 513, A30.ADSCrossRefGoogle Scholar
  12. Bonafede, A. et al. 2015, MNRAS, 454, 3391.ADSCrossRefGoogle Scholar
  13. Bond, J. R., Kofman, L., Pogosyan, D. 1996, Nature, 380, 603.ADSCrossRefGoogle Scholar
  14. Bravi, L., Gitti, M., Brunetti, G. 2016, MNRAS, 455, L41.ADSCrossRefGoogle Scholar
  15. Brown, S., Emerick, A., Rudnick, L. Brunetti, G. 2011, ApJ, 740, L28.ADSCrossRefGoogle Scholar
  16. Brunetti, G. 2011, MMSAI, 82, 515.ADSGoogle Scholar
  17. Brunetti, G., Jones, T. W. 2014, Int. J. Mod. Phys. D, 23, 30007.ADSCrossRefGoogle Scholar
  18. Brunetti, G., Lazarian, A. 2016, MNRAS.Google Scholar
  19. Brunetti, G., Setti, G., Feretti, L., Giovannini, G. 2001, MNRAS, 320, 365.ADSCrossRefGoogle Scholar
  20. Brunetti, G., Venturi, T., Dallacasa, D., Cassano, R., Dolag, K., Giacintucci, S. Setti, G. 2007, ApJ, 670, L5.ADSCrossRefGoogle Scholar
  21. Brunetti, G. et al. 2008, Nature, 455, 944.ADSCrossRefGoogle Scholar
  22. Brunetti, G., Blasi, P., Reimer, O., Rudnick, L., Bonafede, A., Brown, S. 2012, MNRAS, 426, 956.ADSCrossRefGoogle Scholar
  23. Cassano, R. Brunetti, G. 2005, MNRAS, 357, 1313.ADSCrossRefGoogle Scholar
  24. Cassano, R., Brunetti, G. Setti, G. 2006, MNRAS, 369, 1577.ADSCrossRefGoogle Scholar
  25. Cassano, R. et al. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 73.Google Scholar
  26. Condon, J. J. 2002, in: Astronomical Society of the Pacific Conference Series, vol. 278, Single-Dish Radio Astronomy: Techniques and Applications, edited by S. Stanimirovic, D. Altschuler, P. Goldsmith and C. Salter, pp. 155–171.Google Scholar
  27. Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B. Broderick, J. J. 1998, AJ, 115, 1693.ADSCrossRefGoogle Scholar
  28. Cuciti, V., Cassano, R., Brunetti, G., Dallacasa, D., Kale, R., Ettori, S. Venturi, T. 2015, A&A, 580, A97.ADSCrossRefGoogle Scholar
  29. de Gasperin, F., Intema, H. T., van Weeren, R. J., Dawson, W. A., Golovich, N., Wittman, D., Bonafede, A. Brüggen, M. 2015, MNRAS, 453, 3483.ADSCrossRefGoogle Scholar
  30. Dehghan, S., Johnston-Hollitt, M., Mao, M., Norris, R. P., Miller, N. A. Huynh, M. 2011, J. Astrophys. Astr., 32, 491.ADSCrossRefGoogle Scholar
  31. Dehghan, S., Johnston-Hollitt, M., Franzen, T. M. O., Norris, R. P. Miller, N. A. 2014, AJ, 148, 75.ADSCrossRefGoogle Scholar
  32. Dennison, B. 1980, ApJ, 239, L93.ADSCrossRefGoogle Scholar
  33. Donnert, J., Dolag, K., Brunetti, G. Cassano, R. 2013, MNRAS, 429, 3564.ADSCrossRefGoogle Scholar
  34. Douglass, E. M., Blanton, E. L., Clarke, T. E., Randall, S. W. Wing, J. D. 2011, ApJ, 743, 199.ADSCrossRefGoogle Scholar
  35. Dwarakanath, K. S. Kale, R. 2009, ApJ, 698, L163.ADSCrossRefGoogle Scholar
  36. Dwarakanath, K. S., Malu, S. Kale, R. 2011, J. Astrophys. Astr., 32, 529.ADSCrossRefGoogle Scholar
  37. Ebeling, H., Edge, A. C., Mantz, A., Barrett, E., Henry, J. P., Ma, C. J. van Speybroeck, L. 2010, MNRAS, 407, 83.ADSCrossRefGoogle Scholar
  38. Eckert, D. et al. 2015, Nature, 528, 105.ADSCrossRefGoogle Scholar
  39. Enßlin, T. A. Gopal-Krishna 2001, A&A, 366, 26.ADSCrossRefGoogle Scholar
  40. Enßlin, T. A., Biermann, P. L., Klein, U. Kohle, S. 1998, A&A, 332, 395.ADSGoogle Scholar
  41. Felten, J. E., Gould, R. J., Stein, W. A. Woolf, N. J. 1966, ApJ, 146, 955.ADSCrossRefGoogle Scholar
  42. Feretti, L., Orrù, E., Brunetti, G., Giovannini, G., Kassim, N. Setti, G. 2004, A&A, 423, 111.ADSCrossRefGoogle Scholar
  43. Feretti, L., Giovannini, G., Govoni, F. Murgia, M. 2012, AApR, 20, 54.ADSGoogle Scholar
  44. Fujita, Y., Kohri, K., Yamazaki, R. Kino, M. 2007, ApJ, 663, L61.ADSCrossRefGoogle Scholar
  45. Giacintucci, S., Kale, R., Wik, D. R., Venturi, T. Markevitch, M. 2013, ApJ, 766, 18.ADSCrossRefGoogle Scholar
  46. Giacintucci, S., Markevitch, M., Brunetti, G., ZuHone, J. A., Venturi, T., Mazzotta, P. Bourdin, H. 2014a, ApJ, 795, 73.ADSCrossRefGoogle Scholar
  47. Giacintucci, S., Markevitch, M., Venturi, T., Clarke, T. E., Cassano, R. Mazzotta, P. 2014b, ApJ, 781, 9.ADSCrossRefGoogle Scholar
  48. Giovannini, G., Feretti, L., Venturi, T., Kim, K. -T. Kronberg, P. P. 1993, ApJ, 406, 399.ADSCrossRefGoogle Scholar
  49. Giovannini, G., Tordi, M. Feretti, L. 1999, New Astr. Rev., 4, 141.ADSCrossRefGoogle Scholar
  50. Girardi, M., Biviano, A., Giuricin, G., Mardirossian, F. Mezzetti, M. 1993, ApJ, 404, 38.ADSCrossRefGoogle Scholar
  51. Gitti, M., Brunetti, G. Setti, G. 2002, A&A, 386, 456.ADSCrossRefGoogle Scholar
  52. Govoni, F., Murgia, M., Feretti, L., Giovannini, G., Dallacasa, D. Taylor, G. B. 2005, A&A, 430, L5.ADSCrossRefGoogle Scholar
  53. Hlavacek-Larrondo, J. et al. 2013, ArXiv e-prints.Google Scholar
  54. Hoeft, M. Brüggen, M. 2007, MNRAS, 375, 77.ADSCrossRefGoogle Scholar
  55. Iapichino, L. Brüggen, M. 2012, MNRAS, 423, 2781.ADSCrossRefGoogle Scholar
  56. Jaffe, W. J. Perola, G. C. 1973, A&A, 26, 423.ADSGoogle Scholar
  57. Johnston-Hollitt, M., Dehghan, S. Pratley, L. 2015a, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 101.Google Scholar
  58. Johnston-Hollitt, M., Dehghan, S. Pratley, L. 2015b, in: IAU Symposium, vol. 313, Extragalactic Jets from Every Angle, edited by F. Massaro, C. C. Cheung, E. Lopez and A. Siemiginowska, pp. 321–326.Google Scholar
  59. Kale, R. Dwarakanath, K. S. 2009, ApJ, 699, 1883.ADSCrossRefGoogle Scholar
  60. Kale, R. Dwarakanath, K. S. 2010, ApJ, 718, 939.ADSCrossRefGoogle Scholar
  61. Kale, R. Dwarakanath, K. S. 2012, ApJ, 744, 46.ADSCrossRefGoogle Scholar
  62. Kale, R., Dwarakanath, K. S., Bagchi, J. Paul, S. 2012, MNRAS, 426, 1204.ADSCrossRefGoogle Scholar
  63. Kale, R., Venturi, T., Giacintucci, S., Dallacasa, D., Cassano, R., Brunetti, G., Macario, G. Athreya, R. 2013, A&A, 557, A99.ADSCrossRefGoogle Scholar
  64. Kale, R. et al. 2015, ArXiv e-prints.Google Scholar
  65. Kale, R. et al. 2016, in preparation.Google Scholar
  66. Kang, H. 2003, J. Korean Astron. Soc., 36, 111.ADSCrossRefGoogle Scholar
  67. Kang, H. Ryu, D. 2016, ArXiv e-prints.Google Scholar
  68. Keshet, U. Loeb, A. 2010, ApJ, 722, 737.ADSCrossRefGoogle Scholar
  69. Klamer, I., Subrahmanyan, R. Hunstead, R. W. 2004, MNRAS, 351, 101.ADSCrossRefGoogle Scholar
  70. Laing, R. A. Bridle, A. H. 2002, MNRAS, 336, 328.ADSCrossRefGoogle Scholar
  71. Laing, R. A. Bridle, A. H. 2014, MNRAS, 437, 3405.ADSCrossRefGoogle Scholar
  72. Lal, D. V. 2009, in: Astronomical Society of the Pacific Conference Series, vol. 407, The Low-Frequency Radio Universe, edited by D. J. Saikia, D. A. Green, Y. Gupta and T. Venturi, p. 157.Google Scholar
  73. Lal, D. V. Rao, A. P. 2004, A&A, 420, 491.ADSCrossRefGoogle Scholar
  74. Lal, D. V. et al. 2010, ApJ, 722, 1735.ADSCrossRefGoogle Scholar
  75. Lal, D. V. et al. 2013, ApJ, 764, 83.ADSCrossRefGoogle Scholar
  76. Large, M. I., Mathewson, D. S. Haslam, C. G. T. 1959, Nature, 183, 1663.ADSCrossRefGoogle Scholar
  77. Lindner, R. R. et al. 2015, ApJ, 803, 79.ADSCrossRefGoogle Scholar
  78. Loken, C., Roettiger, K., Burns, J. O. Norman, M. 1995, ApJ, 445, 80.ADSCrossRefGoogle Scholar
  79. Malu, S. S. Subrahmanyan, R. 2011, J. Astrophys. Astr., 32, 541.ADSCrossRefGoogle Scholar
  80. Malu, S. S., Subrahmanyan, R., Wieringa, M. Narasimha, D. 2010, ArXiv e-prints.Google Scholar
  81. Malu, S., Datta, A. Sandhu, P. 2016, ArXiv e-prints, in preparation.Google Scholar
  82. Mazzotta, P. Giacintucci, S. 2008, ApJ, 675, L9.ADSCrossRefGoogle Scholar
  83. Miley, G. K., Perola, G. C., van der Kruit, P. C. van der Laan, H. 1972, Nature, 237, 269.ADSCrossRefGoogle Scholar
  84. Miller, N. A. et al. 2013, ApJS, 205, 13.ADSCrossRefGoogle Scholar
  85. Miniati, F., Ryu, D., Kang, H., Jones, T. W., Cen, R. Ostriker, J. P. 2000, ApJ, 542, 608.ADSCrossRefGoogle Scholar
  86. Mitchell, R. J. Culhane, J. L. 1977, MNRAS, 178, 75P.ADSCrossRefGoogle Scholar
  87. Norris, R. P. et al. 2011, PASA, 28, 215.ADSCrossRefGoogle Scholar
  88. Ogrean, G. A., Brüggen, M., van Weeren, R. J., Burgmeier, A. Simionescu, A. 2014, MNRAS, 443, 2463.ADSCrossRefGoogle Scholar
  89. Owen, F. N., Rudnick, L., Eilek, J., Rau, U., Bhatnagar, S. Kogan, L. 2014, ApJ, 794, 24.ADSCrossRefGoogle Scholar
  90. Padmanabhan, T. 2000, Theoretical Astrophysics – Volume 1, Astrophysical Processes, p. 622.zbMATHGoogle Scholar
  91. Pandey-Pommier, M., Richard, J., Combes, F., Dwarakanath, K. S., Guiderdoni, B., Ferrari, C., Sirothia, S. Narasimha, D. 2013, A&A, 557, A117.ADSCrossRefGoogle Scholar
  92. Pandey-Pommier, M. et al. 2015, in: SF2A-2015: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, edited by F. Martins, S. Boissier, V. Buat, L. Cambrésy and P. Petit, pp. 247–252.Google Scholar
  93. Pandey-Pommier, M. et al. 2016, in preparation.Google Scholar
  94. Parekh, M., Dwarakanath, K. S., Kale, R. Intema, H. 2016, ArXiv e-prints, 1608.02796.Google Scholar
  95. Paul, S., Iapichino, L., Miniati, F., Bagchi, J. Mannheim, K. 2011, ApJ, 726, 17.ADSCrossRefGoogle Scholar
  96. Paul, S. et al. 2016, in preparation.Google Scholar
  97. Perucho, M. 2012, Int. J. Mod. Phys. Conference Series, 8, 241.ADSCrossRefGoogle Scholar
  98. Perucho, M., Quilis, V. Martí, J. -M. 2011, ApJ, 743, 42.ADSCrossRefGoogle Scholar
  99. Perucho, M., Quilis, V. Martí, J. -M. 2012, in: Astronomical Society of the Pacific Conference Series, vol. 459, Numerical Modeling of Space Plasma Slows (ASTRONUM 2011), edited by N. V. Pogorelov, J. A. Font, E. Audit and G. P. Zank, p. 155.Google Scholar
  100. Petrosian, V. 2001, ApJ, 557, 560.ADSCrossRefGoogle Scholar
  101. Petrosian, V. East, W. E. 2008, ApJ, 682, 175.ADSCrossRefGoogle Scholar
  102. Pfrommer, C. Enßlin, T. A. 2004, A&A, 413, 17.ADSCrossRefGoogle Scholar
  103. Pizzo, R. F, de Bruyn, A. G., Bernardi, G. Brentjens, M. A. 2011, A&A, 525, A104.ADSCrossRefGoogle Scholar
  104. Planck Collaboration et al. 2011, A&A, 536, A8.ADSCrossRefGoogle Scholar
  105. Planck Collaboration et al. 2013, A&A, 550, A134.ADSCrossRefGoogle Scholar
  106. Planck Collaboration et al. 2014, A&A, 571, A29.ADSCrossRefGoogle Scholar
  107. Raychaudhury, S., Fabian, A. C., Edge, A. C., Jones, C. Forman, W. 1991, MNRAS, 248, 101.ADSCrossRefGoogle Scholar
  108. Reichardt, C. L. et al. 2013, ApJ, 763, 127.ADSCrossRefGoogle Scholar
  109. Rhee, G., Burns, J. O. Kowalski, M. P. 1994, AJ, 108, 1137.ADSCrossRefGoogle Scholar
  110. Roettiger, K., Burns, J. O. Loken, C. 1996, ApJ, 473, 651.ADSCrossRefGoogle Scholar
  111. Ryle, M. Windram, M. D. 1968, MNRAS, 138, 1.ADSCrossRefGoogle Scholar
  112. Scaramella, R., Baiesi-Pillastrini, G., Chincarini, G., Vettolani, G. Zamorani, G. 1989, Nature, 338, 562.ADSCrossRefGoogle Scholar
  113. Spergel, D. N. et al. 2003, ApJS, 148, 175.ADSCrossRefGoogle Scholar
  114. Springel, V. et al. 2005, Nature, 435, 629.ADSCrossRefGoogle Scholar
  115. Stroe, A. et al. 2016, MNRAS, 455, 2402.ADSCrossRefGoogle Scholar
  116. Subramanian, K., Shukurov, A. Haugen, N. E. L. 2006, MNRAS, 366, 1437.ADSCrossRefGoogle Scholar
  117. Sunyaev, R. A. Zeldovich, Y. B. 1972, Comments on Astrophysics and Space Physics, 4, 173.ADSGoogle Scholar
  118. Trasatti, M., Akamatsu, H., Lovisari, L., Klein, U., Bonafede, A., Brüggen, M., Dallacasa, D. Clarke, T. 2015, A&A, 575, A45.ADSCrossRefGoogle Scholar
  119. van Weeren, R. J. et al. 2009, A&A, 506, 1083.ADSCrossRefGoogle Scholar
  120. van Weeren, R. J., Röttgering, H. J. A., Brüggen, M. Hoeft, M. 2010, Science, 330, 347.ADSCrossRefGoogle Scholar
  121. van Weeren, R. J., Brüggen, M., Röttgering, H. J. A., Hoeft, M., Nuza, S. E. Intema, H. T. 2011, A&A, 533, A35.ADSCrossRefGoogle Scholar
  122. van Weeren, R. J. et al. 2014a, ApJ, 786, L17.ADSCrossRefGoogle Scholar
  123. van Weeren, R. J. et al. 2014b, ApJ, 781, L32.ADSCrossRefGoogle Scholar
  124. Vazza, F. Brüggen, M. 2014, MNRAS, 437, 2291.ADSCrossRefGoogle Scholar
  125. Vazza, F., Ferrari, C., Bonafede, A., Brüggen, M., Gheller, C., Braun, R. Brown, S. 2015a, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 97.Google Scholar
  126. Vazza, F., Ferrari, C., Brüggen, M., Bonafede, A., Gheller, C. Wang, P. 2015b, A&A, 580, A119.ADSCrossRefGoogle Scholar
  127. Venkatesan, T. C. A., Batuski, D. J., Hanisch, R. J. Burns, J. O. 1994, ApJ, 436, 67.ADSCrossRefGoogle Scholar
  128. Venturi, T., Bardelli, S., Morganti, R. Hunstead, R. W. 2000, MNRAS, 314, 594.ADSCrossRefGoogle Scholar
  129. Venturi, T., Giacintucci, S., Brunetti, G., Cassano, R., Bardelli, S., Dallacasa, D. Setti, G. 2007, A&A, 463, 937.ADSCrossRefGoogle Scholar
  130. Venturi, T., Giacintucci, S., Dallacasa, D., Cassano, R., Brunetti, G., Bardelli, S. Setti, G. 2008, A&A, 484, 327.ADSCrossRefGoogle Scholar
  131. Willson, M. A. G. 1970, MNRAS, 151, 1.ADSCrossRefGoogle Scholar
  132. Zel’dovich, Y. B. 1970, A&A, 5, 84.ADSGoogle Scholar
  133. ZuHone, J. A., Markevitch, M., Brunetti, G. Giacintucci, S. 2013, ApJ, 762, 78.ADSCrossRefGoogle Scholar
  134. ZuHone, J., Brunetti, G., Giacintucci, S. Markevitch, M. 2014, ArXiv e-prints.Google Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • Ruta Kale
    • 1
    Email author return OK on get
  • K. S. Dwarakanath
    • 2
  • Dharam Vir Lal
    • 1
  • Joydeep Bagchi
    • 3
  • Surajit Paul
    • 4
  • Siddharth Malu
    • 5
  • Abhirup Datta
    • 5
  • Viral Parekh
    • 2
  • Prateek Sharma
    • 6
  • Mamta Pandey-Pommier
    • 7
  1. 1.National Centre for Radio Astrophysics, Tata Institute of Fundamental ResearchPune University CampusPuneIndia
  2. 2.Raman Research InstituteBengaluruIndia
  3. 3.Inter University Centre for Astronomy and Astrophysics (IUCAA)PuneIndia
  4. 4.Department of PhysicsSavitribai Phule Pune UniversityPuneIndia
  5. 5.Indian Institute of Technology IndoreIndoreIndia
  6. 6.Department of PhysicsIndian Institute of ScienceBengaluruIndia
  7. 7.Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574Saint-Genis-LavalFrance

Personalised recommendations