Journal of Astrophysics and Astronomy

, Volume 36, Issue 1, pp 123–155 | Cite as

Numerical Simulations of a Flux Rope Ejection

  • P. Pagano
  • D. H. Mackay
  • S. Poedts


Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while magnetic energy is being accumulated. However, still many questions are outstanding on the detailed mechanism of the ejection and observations continuously provide new data to interpret and put in the context. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. However, these observations are difficult to interpret in terms of basic physical mechanisms and quantities, thus, we need to compare equivalent quantities to test and improve our models.

In our work, we intend to bridge the gap between models and observations with our model of flux rope ejection where we consistently describe the full life span of a flux rope from its formation to ejection. This is done by coupling the global non-linear force-free model (GNLFFF) built to describe the slow low- β formation phase, with a full MHD simulation run with the software MPI-AMRVAC, suitable to describe the fast MHD evolution of the flux rope ejection that happens in a heterogeneous β regime. We also explore the parameter space to identify the conditions upon which the ejection is favoured (gravity stratification and magnetic field intensity) and we produce synthesised AIA observations (171 Å and 211 Å). To carry this out, we run 3D MHD simulation in spherical coordinates where we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME.

Our model of flux rope ejection is successful in realistically describing the entire life span of a flux rope and we also set some conditions for the backgroud solar corona to favour the escape of the flux rope, so that it turns into a CME. Furthermore, our MHD simulation reproduces many of the features found in the AIA observations.

Key words

Coronal mass ejections—magnetohydrodynamics—simulations—corona 


  1. Amari, T., Luciani, J. F., Aly, J. J., Mikic, Z., Linker, J. 2003a, ApJ, 585, 1073–1086.Google Scholar
  2. Amari, T., Luciani, J. F., Aly, J. J., Mikic, Z., Linker, J. 2003b, ApJ, 595, 1231–1250.Google Scholar
  3. Amari, T., Aly, J.-J., Luciani, J.-F., Mikic, Z., Linker, J. 2011, ApJl, 742, L27.Google Scholar
  4. Antiochos, S. K., DeVore, C. R., Klimchuk, J. A. 1999, ApJ, 510, 485–493.Google Scholar
  5. Archontis, V., Török, T. 2008, A&A, 492, L35–L38.Google Scholar
  6. Archontis, V., Hood, A. W., Tsinganos, K. 2014, ApJl, 786, L21.Google Scholar
  7. Aulanier, G., Török, T., Démoulin, P., DeLuca, E. E. 2010, ApJ, 708, 314–333.Google Scholar
  8. Chatterjee, P., Fan, Y. 2013, ApJl, 778, L8.Google Scholar
  9. Chen, J. 1989, ApJ, 338, 453–470.Google Scholar
  10. Chen, P. F. 2011, Living Reviews in Solar Physics, 8, 1.Google Scholar
  11. Colgan, J., Abdallah, J. Jr., Sherrill, M. E., Foster, M., Fontes, C. J., Feldman, U. 2008, ApJ, 689, 585–592.Google Scholar
  12. Fan, Y. 2005, ApJ, 630, 543–551.Google Scholar
  13. Fan, Y. 2010, ApJ, 719, 728–736.Google Scholar
  14. Fan, Y., Gibson, S. E. 2007, ApJ, 668, 1232–1245.Google Scholar
  15. Forbes, T. G. 1991, Geophysical and Astrophysical Fluid Dynamics, 62, 15–36.Google Scholar
  16. Forbes, T. G., Isenberg, P. A. 1991, ApJ, 373, 294–307.Google Scholar
  17. Inoue, S., Kusano, K. 2006, ApJ, 645, 742–756.Google Scholar
  18. Inoue, S., Hayashi, K., Magara, T., Choe, G. S., Park, Y. D. 2014, ApJ, 788, 182.Google Scholar
  19. Jacobs, C., Poedts, S., van der Holst, B. 2006, A&A, 450, 793–803.Google Scholar
  20. Jiang, C., Feng, X., Wu, S. T., Hu, Q. 2013, ApJl, 771, L30.Google Scholar
  21. Kliem, B., Török, T. 2006, Physical Review Letters, 96 (25), 255002.Google Scholar
  22. Kliem, B., Linton, M. G., Török, T., Karlický, M. 2010, Solar Physics, 266, 91–107.Google Scholar
  23. Kliem, B., Török, T., Thompson, W. T. 2012, Solar Physics, 281, 137–166.Google Scholar
  24. Kliem, B., Su, Y. N., van Ballegooijen, A. A., DeLuca, E. E. 2013, ApJ, 779, 129.Google Scholar
  25. Kliem, B., Lin, J., Forbes, T. G., Priest, E. R., Török, T. 2014, ApJ, 789, 46.Google Scholar
  26. Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T. 2004, ApJ, 610, 537–549.Google Scholar
  27. Kusano, K., Bamba, Y., Yamamoto, T. T., Iida, Y., Toriumi, S., Asai, A. 2012, ApJ, 760, 31.Google Scholar
  28. Leake, J. E., Linton, M. G., Antiochos, S. K. 2014, ApJ, 787, 46.Google Scholar
  29. Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., Duncan, D. W., Edwards, C. G., Friedlaender, F. M., Heyman, G. F., Hurlburt, N. E., Katz, N. L., Kushner, G. D., Levay, M., Lindgren, R. W., Mathur, D. P., McFeaters, E. L., Mitchell, S., Rehse, R. A., Schrijver, C. J., Springer, L. A., Stern, R. A., Tarbell, T. D., Wuelser, J. -P., Wolfson, C. J., Yanari, C., Bookbinder, J. A., Cheimets, P. N., Caldwell, D., Deluca, E. E., Gates, R., Golub, L., Park, S., Podgorski, W. A., Bush, R. I., Scherrer, P. H., Gummin, M. A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D. L., Beardsley, S., Clapp, M., Lang, J. Waltham, N. 2012, Solar Physics, 275, 17–40.Google Scholar
  30. Mackay, D. H., van Ballegooijen, A. A. 2006a, ApJ, 641, 577–589.Google Scholar
  31. Mackay, D. H., van Ballegooijen, A. A. 2006b, ApJ, 642, 1193–1204.Google Scholar
  32. MacTaggart, D., Hood, A. W. 2009, A&A, 508, 445–449.Google Scholar
  33. Mikic, Z., Linker, J. A. 1994, ApJ, 430, 898–912.Google Scholar
  34. Nishida, K., Nishizuka, N., Shibata, K. 2013, ApJl, 775, L39.Google Scholar
  35. Pagano, P., Mackay, D. H., Poedts, S. 2013a, A&A, 554, A77.Google Scholar
  36. Pagano, P., Mackay, D. H., Poedts, S. 2013b, A&A, 560, A38.Google Scholar
  37. Pagano, P., Mackay, D. H., Poedts, S. 2014, A&A, 568, A120.Google Scholar
  38. Porth, O., Xia, C., Hendrix, T., Moschou, S. P., Keppens, R. 2014, ApJS, 214, 4.Google Scholar
  39. Priest, E. R., Forbes, T. G. 1990, Solar Physics, 126, 319–350.Google Scholar
  40. Roussev, I. I., Sokolov, I. V., Forbes, T. G., Gombosi, T. I., Lee, M. A., Sakai, J. I. 2004, ApJl, 605, L73–L76.Google Scholar
  41. Roussev, I. I., Galsgaard, K., Downs, C., Lugaz, N., Sokolov, I. V., Moise, E., Lin, J. 2012, Nature Physics, 8, 845–849.Google Scholar
  42. Sakurai, T. 1976, Publ. Astr. Soc. Japan, 28, 177–198.Google Scholar
  43. Savcheva, A., Pariat, E., van Ballegooijen, A., Aulanier, G., DeLuca, E. 2012, ApJ, 750, 15.Google Scholar
  44. Shiota, D., Kusano, K., Miyoshi, T., Shibata, K. 2010, ApJ, 718, 1305–1314.Google Scholar
  45. Spitzer, L. 1962, Physics of Fully Ionized Gases. Physics of Fully Ionized Gases, Interscience (2nd edition), New York.Google Scholar
  46. Tanaka, T. 1994, J. Comput. Phys., 111, 381–390.Google Scholar
  47. Török, T., Kliem, B. 2005, ApJl, 630, L97–L100.Google Scholar
  48. Török, T., Panasenco, O., Titov, V. S., Miki´c, Z., Reeves, K. K., Velli, M., Linker, J. A., De Toma, G. 2011, ApJl, 739, L63.Google Scholar
  49. Török T., Temmer, M., Valori, G., Veronig, A. M., van Driel-Gesztelyi, L., Vršnak, B. 2013, Solar Physics, 286, 453–477.Google Scholar
  50. Tóth, G., Odstrˇcil, D. 1996, J. Comput. Phys., 128, 82–100.Google Scholar
  51. Tousey, R. 1973, The Solar Corona. In M. J. Rycroft and S. K. Runcorn, editors, Space Research, page 713.Google Scholar
  52. van Ballegooijen, A. A., Martens, P. C. H. 1989, ApJ, 343, 971–984.Google Scholar
  53. van der Holst, B., Keppens, R., Meliani, Z. 2008, Computer Physics Communications, 179, 617–627.Google Scholar
  54. van Marle, A. J., Keppens, R. 2011, Computers & Fluids, 42, 44–53.Google Scholar
  55. Vourlidas, A., Lynch, B. J., Howard, R. A., Li, Y. 2013, Solar Physics, 284, 179–201.Google Scholar
  56. Yeates, A. R., Mackay, D. H. 2009, ApJ, 699, 1024–1037.Google Scholar
  57. Yeates, A. R., Attrill, G. D. R., Nandy, D., Mackay, D. H., Martens, P. C. H., van Ballegooijen, A. A. 2010, ApJ, 709, 1238–1248.Google Scholar
  58. Zuccarello, F. P., Meliani, Z., Poedts, S. 2012, ApJ, 758, 117.Google Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
  2. 2.Department of MathematicsCentre for Mathematical Plasma AstrophysicsLeuvenBelgium

Personalised recommendations