Journal of Astrophysics and Astronomy

, Volume 36, Issue 1, pp 157–184 | Cite as

Solar Magnetic Flux Ropes

  • Boris FilippovEmail author
  • Olesya Martsenyuk
  • Abhishek K. Srivastava
  • Wahab Uddin


In the early 1990s, it was found that the strongest disturbances of the space–weather were associated with huge ejections of plasma from the solar corona, which took the form of magnetic clouds when moved from the Sun. It is the collisions of the magnetic clouds with the Earth’s magnetosphere that lead to strong, sometimes catastrophic changes in space–weather. The onset of a coronal mass ejection (CME) is sudden and no reliable forerunners of CMEs have been found till date. The CME prediction methodologies are less developed compared to the methods developed for the prediction of solar flares. The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading, etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field, which is estimated as decay index (n). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are, therefore, good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by a comparison of observed filament heights with calculated decay index distributions. The present paper reviews the formation of magnetic flux ropes, their stable and unstable phases, eruption conditions, and also discusses their physical implications in the solar corona.

Key words

Magnetic fields—flux ropes—filaments—coronal mass ejections—magnetic helicity—filament chirality. 



This work was supported in part by the Russian Foundation for Basic Research (grant 14-02-92690) and in part by the Department of Science and Technology, Ministry of Science and Technology of India (grant INT/RFBR/P-165)


  1. Amari, T., Aly, J. -J., Luciani, J. -F., Mikic, Z. Linker, J. 2011, Astrophys. J. Lett., 742, L27.ADSGoogle Scholar
  2. Anzer, U. Priest, E. 1985, Solar Phys., 95, 363.Google Scholar
  3. Aulanier, G., Török, T., Démoulin, P. DeLuca, E. E. 2010, Astrophys. J., 708, 314.ADSGoogle Scholar
  4. Aurass, H., Vrsnak, B., Hofmann, A. Rudzjak, V. 1999, Solar Phys., 190, 267.ADSGoogle Scholar
  5. Ballester, J. L. 1984, Solar Phys., 94, 151.ADSGoogle Scholar
  6. Bateman, G. 1978, MHD instabilities, The Massachusetts Institute of Technology.Google Scholar
  7. Biskamp, D. 1982, Phys. Letters, 87A, 357.ADSGoogle Scholar
  8. Biskamp, D. 1984, Phys. Letters, 105A, 124.ADSGoogle Scholar
  9. Braams, C. M. Stott, P. E. 2002, Nuclear Fusion: Half a Century of Magnetic Confinement Research, Institute of Physics Publishing.Google Scholar
  10. Brandt, P. N., Scharmer, G. B., Ferguson, S., Shine, R. A., Tarbell, T. D. Title, A. M. 1988, Nature, 335, 238.ADSGoogle Scholar
  11. Browning, P. K. 1991, Plasma Phys. and Contr. Fusion, 33, 571.Google Scholar
  12. Buneman, O. 1961, Plasma Physics, edited by Drummond J. E., LOC 60-12766. Publ. McGraw-Hill, Inc., New York, p. 202.Google Scholar
  13. Chae, J. 2000, Astrophys. J. Lett., 540, L115.ADSGoogle Scholar
  14. Chen, J. 1989, Astrophys. J., 338, 453.ADSMathSciNetGoogle Scholar
  15. Cheng, X., Zhang, J., Ding, M. D., Guo, Y. Su, J. T. 2011, Astrophys. J., 732, 87.ADSGoogle Scholar
  16. Cheng, X., Ding, M. D., Guo, Y., Zhang, J., Vourlidas, A., Liu, Y. D., Olmedo, O., Sun, J. Q. Li, C. 2014a, Astrophys. J., 780, 28.Google Scholar
  17. Cheng, X., Ding, M. D., Zhang, J., Srivastava, A. K., Guo, Y., Chen, P. F. Sun, J. Q. 2014b, Astrophys. J., 789, L35.Google Scholar
  18. Canfield, R. C., Hudson, H. S. McKenzie, D. E. 1999, Geophys. Res. Lett., 26, 627.ADSGoogle Scholar
  19. Clark, S. 2006, Nature, 441, 402.ADSGoogle Scholar
  20. Démoulin, P. Aulanier, G. 2010, Astrophys. J., 718, 1388.ADSGoogle Scholar
  21. Dungey, J. W. 1953, Phil. Mag., 44, 725.Google Scholar
  22. Fan, Y. 2001, Astrophys. J., 554, L111.ADSGoogle Scholar
  23. Fan, Y. 2010, Astrophys. J., 719, 728.ADSGoogle Scholar
  24. Fan, Y. Gibson, S. E. 2007, Astrophys. J., 668, 1232.ADSGoogle Scholar
  25. Filippov, B. P. 1994, Astron. Lett., 20, 665.ADSGoogle Scholar
  26. Filippov, B. P. 1995, Astron. Astrophys., 303, 242.ADSGoogle Scholar
  27. Filippov, B. 1998, in New Perspectives on Solar Prominences, edited by Webb, D., Rust, D. M., Schmieder B., ASP Conf. Ser. 150, 94.Google Scholar
  28. Filippov, B. 2013, Astrophys. J., 771, 10.ADSGoogle Scholar
  29. Filippov, B. P. Den, O. G. 2000, Astron. Lett., 26, 322.ADSGoogle Scholar
  30. Filippov, B. P. Den, O. G. 2001, J. Geophys. Res., 106, 25177.ADSGoogle Scholar
  31. Filippov, B. Zagnetko, A. 2008, J. Atmosph. Solar-Terrestr. Phys., 70, 614.ADSGoogle Scholar
  32. Filippov, B. P., Martsenyuk, O. V., Den, O. E. Platov, Yu. V 2014, Astron. Rep., 58, 928.ADSGoogle Scholar
  33. Forbes, T. G. Isenberg, P. A. 1991, Astrophys. J., 373, 294.ADSGoogle Scholar
  34. Forbes, T. G. Priest, E. R. 1995, Astrophys. J., 446, 377.ADSGoogle Scholar
  35. Foukal, P. 1971, Solar Phys., 19, 59.ADSGoogle Scholar
  36. Gaizauskas, V., Zirker, J. B., Sweetland, C. Kovacs, A. 1997, Astrophys. J., 479, 448.ADSGoogle Scholar
  37. Gary, G. A. 2001, Solar Phys., 203, 71.ADSGoogle Scholar
  38. Gary, G. A. Moore, R. L. 2004, Astrophys. J., 611, 545.ADSGoogle Scholar
  39. Gibson, S. E., Foster, D., Burkepile, J., de Toma, G. Stanger, A. 2006, Astrophys. J., 641, 590.ADSGoogle Scholar
  40. Giovanelli, R. G. 1947, Monthly Notices Royal Astron. Soc., 107, 338.ADSzbMATHGoogle Scholar
  41. Giovanelli, R. G. 1948, Monthly Notices Royal Astron. Soc., 108, 163.ADSGoogle Scholar
  42. Galsgaard, K. Nordlund, Å 1997, J. Geophys. Res., 102, 231.ADSGoogle Scholar
  43. Galsgaard, K., Priest, E. R. Titov, V. S. 2003, J. Geophys. Res. (Space Physics), 108, 1042.ADSGoogle Scholar
  44. Gopalswamy, N. 2008, J. Atmosph. Solar-Terrestr. Phys., 70, 2078.ADSGoogle Scholar
  45. Gosling, J. T. 1993, J. Geophys. Res., 98, 18937.ADSGoogle Scholar
  46. Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A. I. Ross, C. L. 1974, J. Geophys. Res., 79, 4581.ADSGoogle Scholar
  47. Green, L. M., Kliem, B., Török, T., van Driel-Gesztelyi, L. Attrill, C. D. R. 2007, Solar Phys., 246, 365.ADSGoogle Scholar
  48. Guo, Y., Ding, M. D., Schmieder, B., Li, H., Török, T. Wiegelmann, T. 2010, Astrophys. J. Lett., 725, L38.ADSGoogle Scholar
  49. Harvey, K. 2001, ‘Coronal Cavities’, in Encyclopedia of Astronomy and Astrophysics, edited by Murdin, P., Nature Publishing Group and Institute of Physics Publishers.Google Scholar
  50. Hildner, E. 1977, in Study of Travelling Interplanetary Phenomena, edited by Shea, M. A., Smart, D. F., Wu, S. T., Proc. L. D. de Feiter Memorial Symp., ASSL, 71, Dordrecht, D. Reidel Publishing Co., p. 3.Google Scholar
  51. Huttunen, K. E. J., Koskinen, H. E. J., Pulkkinen, T. I., Pulkkinen, A., Palmroth, M., Reeves, E. G. D. Singer, H. J. 2002, J. Geophys. Res., 107, 15.Google Scholar
  52. Isenberg, P. A., Forbes, T. G. Démoulin, P. 1993, Astrophys. J., 417, 368.ADSGoogle Scholar
  53. Isenberg, P. A. Forbes, T. G. 2007, Astrophys. J., 670, 1453.ADSGoogle Scholar
  54. Jackson, B. V. Howard, R. A. 1993, Solar Phys., 148, 359.ADSGoogle Scholar
  55. Jardine, M. Priest, E. R. 1988, J. Plasma Phys., 40, 143.ADSGoogle Scholar
  56. Joshi, N. C., Srivastava, A. K., Filippov, B., Kayshap, P., Uddin, W., Chandra, R., Choudhary, D. P. Dwivwdi, B. N. 2014, Astrophys. J., 787, 11.ADSGoogle Scholar
  57. Kahler, S. W. 1992, Ann. Rev. Astron. Astrophys., 30, 113.ADSGoogle Scholar
  58. Kahler, S. W. 2003, Adv. Space Res., 32, 2587.ADSGoogle Scholar
  59. Kliem, B. Török, T. 2006, Phys. Rev. Lett., 96, 255002.ADSGoogle Scholar
  60. Kleim, B., Titov, V. Török, T. 2004, Astron. Astrophys., 413, L23.ADSGoogle Scholar
  61. Kliem, B., Török, T. Forbes, T. G. 2011, in ESPM-13 Programme and Abstract Book, edited by Tziotziou, K., Gontikakis, C., EPS, p. 68.Google Scholar
  62. Kliem, B., Lin, J., Forbes, T. G., Priest, E. R. Török, T. 2014, Astrophys. J., 789, 46.ADSGoogle Scholar
  63. Korsós, M. B., Baranyi, T. Ludmány, A. 2014, Astrophys. J., 789, 107.ADSGoogle Scholar
  64. Korsós, M. B., Gyeng, N., Baranyi, T. Ludmány, A. 2015, J. Astrophys. Astron. (this volume).Google Scholar
  65. Koutchmy, S., Slemzin, V., Filippov, B., Noens, J. -C., Romeuf, D. Golub, L. 2008, Astron. Astrophys., 483, 599.ADSGoogle Scholar
  66. Kulikova, G. N., Molodenskii, M. M., Starkova, L. I. Filippov, B. P. 1986, Solnechnye Dannye, No. 10, 60.Google Scholar
  67. Kulikova, G. N., Molodenskii, M. M., Starkova, L. I. Filippov, B. P. 1989, in Solar Magnetic Fields and Corona, Nauka, Novosibirsk, p. 156.Google Scholar
  68. Kumar, P., Srivastava, A. K., Filippov, B. Uddin, W. 2010, Solar Phys., 266, 39.ADSGoogle Scholar
  69. Kumar, P., Cho, K. -S., Bong, S. -C., Park, S. -H. Kim, Y. H. 2012, Astrophys. J., 746, 67.ADSGoogle Scholar
  70. Kumar, P., Srivastava, A. K., Filippov, B., Erdélyi, R. Uddin, W. 2011, Solar Phys., 272, 301.ADSGoogle Scholar
  71. Kuperus, M. Raadu, M. A. 1974, Astron. Astrophys., 31, 189.ADSGoogle Scholar
  72. Landau, L. D., Lifshitz, E. M. Pitaevsky, L. P. 1984, Electrodynamics of Continuous Media, 2nd edition, Pergamon Press, Oxford.Google Scholar
  73. Lee, S. 1983, Plasma Phys., 25, 571.ADSGoogle Scholar
  74. Lee, L. C. Fu, Z. F. 1986, Geophys. Res. Letters, 12, 2.Google Scholar
  75. Leroy, J. -L. 1989, in Dynamics and Structure of Quiescent Solar Prominences, edited by Priest, E. R., Kluwer, Dordrecht, p. 77.Google Scholar
  76. Li, X., Morgan, H., Leonard, D. Jeska, L. 2012, Astrophys. J. Lett., 752, L22.ADSGoogle Scholar
  77. Lin, J., Forbes, T. G., Isenberg, P. A. Démoulin, P. 1998, Astrophys. J., 504, 1006.ADSGoogle Scholar
  78. Lin, J. Forbes, T. G. 2000, J. Geophys. Res., 105, 2375.ADSGoogle Scholar
  79. Lin, J. van Ballegooijen, A. A. 2002, Astrophys. J., 576, 485.ADSGoogle Scholar
  80. Lin, J., Ko, Y. -K., Sui, L., Raymond, J. C., Stenborg, G. A., Jiang, Y., Zhao, S. Mancuso, S. 2005, Astrophys. J., 622, 1251.ADSGoogle Scholar
  81. Lites, B. W., Kubo, M., Berger, T., Frank, Z., Shine, R., Tarbell, T., Title, A., Okamoto, T. J. Otsuji, K. 2010, Astrophys. J., 718, 474.ADSGoogle Scholar
  82. Liu, Y. 2008, Astrophys. J., 679, L151.ADSGoogle Scholar
  83. Liu, W., Wang, T. J., Dennis, B. R. Holman, G. D. 2009, Astrophys. J., 698, 632.ADSGoogle Scholar
  84. Liu, C., Lee, J., Jing, J., Liu, R., Deng, N. Wang, H. 2010a, Astrophys. J. Lett., 721, L193.Google Scholar
  85. Liu, R., Lee, J., Wang, T. J., Stenborg, G., Liu, C. Wang, H. 2010b, Astrophys. J., 723, L28.Google Scholar
  86. Longcope, D. W. Welsch, B. T. 2000, Astrophys. J., 545, 1089.ADSGoogle Scholar
  87. Longcope, D. W. Forbes, T. G. 2014, Solar Phys., 289, 2091.ADSGoogle Scholar
  88. Magara, T. 2006, Astrophys. J., 653, 1499.ADSGoogle Scholar
  89. Malherbe, J. M. Priest, E. R. 1983, Astron. Astrophys., 123, 80.ADSGoogle Scholar
  90. Manchester, W. I., Gombosi, T., DeZeeuw, D. Fan, Y. 2004, Astrophys. J., 610, 588.ADSGoogle Scholar
  91. Martin, S. F. 1998, Solar Phys., 182, 107.ADSGoogle Scholar
  92. Martin, S. F., Billimoria, R. Tracadas, P. W. 1994, in Solar Surface Magnetism, edited by Rutten, R. J., Schrijver, C.J., Kluwer Acad., Dordrecht, Holland, p. 303.Google Scholar
  93. Martres, M. J., Michard, R. Soru-Escout, I. 1966, Ann. Astrophys., 29, 249.ADSGoogle Scholar
  94. Molodensky, M. M. 1974, Solar Phys., 39, 393.ADSGoogle Scholar
  95. Molodenskii, M. M. Filippov, B. P. 1987, Soviet Astron., 31, 564.ADSGoogle Scholar
  96. Molodenskii, M. M. Filippov, B. P. 1989, Soviet Astron., 33, 540.ADSGoogle Scholar
  97. Moore, R. L., Sterling, A. C., Hudson, H. S. Lemen, J. R. 2001, Astrophys. J., 552, 833.ADSGoogle Scholar
  98. Murawski, K., Srivastava, A. K. Musielak, Z. E. 2014, Astrophys. J., 788, 8.ADSGoogle Scholar
  99. Nindos, A., Patsourakos, S. Wiegelmann, T. 2012, Astrophys. J. Lett., 748, L6.ADSGoogle Scholar
  100. Okamoto, T. J., Tsuneta, S., Lites, B. W., Kubo, M., Yokoyama, T., Berger, T. E., Ichimoto, K., Katsukawa, Y., Nagata, S., Shibata, K. et al 2008, Astrophys. J., 673, L215.ADSGoogle Scholar
  101. Okamoto, T. J., Tsuneta, S., Lites, B. W., Kubo, M., Yokoyama, T., Berger, T. E., Ichimoto, K., Katsukawa, Y., Nagata, S., Shibata, K. et al 2009, Astrophys. J., 697, 913.ADSGoogle Scholar
  102. Olmedo, O. Zhang, J. 2010, Astrophys. J., 718, 433.ADSGoogle Scholar
  103. Paletou, F. Aulanier, G. 2003, in Solar Polarization Workshop 3, edited by Trujillo Bueno, J., Sánchez Almeida, J., CS-236, Astron. Soc. Pac., San Francisco, p. 458.Google Scholar
  104. Pariat, E., Antiochos, S. K. DeVore, C. R. 2009, Astrophys. J., 691, 61.ADSGoogle Scholar
  105. Parker, E. N. 1957, J. Geophys. Res., 62, 509.ADSGoogle Scholar
  106. Parker, E. N. 1973, J. Plasma Phys., 9, 49.ADSGoogle Scholar
  107. Parker, E. N. 1979, Cosmical magnetic fields. Their origin and their activity, Oxford.Google Scholar
  108. Patsourakos, S., Vourlidas, A. Stenborg, G. 2013, Astrophys. J., 764, 125.ADSGoogle Scholar
  109. Petschek, H. E. 1964, in AAS-NASA Symposium on Solar Flares, NASA SP-50, p. 425.Google Scholar
  110. Pevtsov, A. A., Canfield, R. C. Zirin, H. 1996, Astrophys. J., 473, 533.ADSGoogle Scholar
  111. Pevtsov, A. A., Balasubramaniam, K. S. Rogers, J. W. 2003, Astrophys. J., 595, 500.ADSGoogle Scholar
  112. Pneuman, G. W. 1983, Solar Phys., 88, 219.ADSGoogle Scholar
  113. Podgorny, A. I. Podgorny, I. M. 2006, Astron. Rep., 50, 842.ADSGoogle Scholar
  114. Pontin, D. I. Galsgaard, K. 2007, J. Geophys. Res., 112, 3103.Google Scholar
  115. Pontin, D. I., Bhattacharjee, A. Galsgaard, K. 2007, Phys. Plasmas, 14, 052106.ADSGoogle Scholar
  116. Pontin, D. I., Hornig, G. Priest, E. R. 2004, Geophys. Astrophys. Fluid Dyn., 98, 407.ADSzbMATHMathSciNetGoogle Scholar
  117. Pontin, D. I., Hornig, G. Priest, E. R. 2005, Geophys. Astrophys. Fluid Dyn., 99, 77.ADSzbMATHMathSciNetGoogle Scholar
  118. Priest, E. R. 1990, in Dynamics of quiescent prominences, Lecture Notes in Physics 363, Springer-Verlag, Berlin and New York, p. 150.Google Scholar
  119. Priest, E. R. Forbes, T. G. 1986, J. Geophys. Res., 91, 5579.ADSGoogle Scholar
  120. Priest, E. R. Forbes, T. G. 1990, Solar Phys., 126, 319.ADSGoogle Scholar
  121. Priest, E. R. 1996, Phil. Trans. R. Soc. Lond. A, 354, 2951.ADSzbMATHMathSciNetGoogle Scholar
  122. Priest, E. R. Forbes, T. G. 2002, Astron. Astrophys. Rev., 10, 313.ADSGoogle Scholar
  123. Reeves, K. K., Gibson, S. E., Kucera, T. A., Hudson, H. S. Kano, R. 2012, Astrophys. J., 746, 146.ADSGoogle Scholar
  124. Régnier, S. Canfield, R. C. 2006, Astron. Astrophys., 451, 319.ADSGoogle Scholar
  125. Régnier, S., Walsh, R. W. Alexander, C. E. 2011, Astron. Astrophys., 533, L1.ADSGoogle Scholar
  126. Rickard, G. J. Titov, V. S. 1996, Astrophys. J., 472, 840.ADSGoogle Scholar
  127. Roussev, I. I., Forbes, T. G., Gombosi, T. I., Sokolov, I. V., DeZeeuw, D. L. Birn, J. 2003, Astrophys. J., 588, L45.ADSGoogle Scholar
  128. Rust, D. M. Martin, S. F. 1994, in Solar Active Region Evolution: Comparing Models with Observations, edited by Balasubramanian, K. S., Simon, G. W., ASP Conf. Ser., 68, p. 337.Google Scholar
  129. Rust, D. M. 1999, in Magnetic Helicity in Space and Laboratory Plasmas: Geophysical Monograph, 111, edited by Brown, M. R., Canfield, R. C., Pevtsov, A. A., American Geophysical Union, Washington, p. 221.Google Scholar
  130. Savcheva, A. S., van Ballegooijen, A. A. DeLuca, E. E. 2012, Astrophys. J., 744, 78.ADSGoogle Scholar
  131. Scholer, M. 1989, J. Geophys. Res., 94, 8805.ADSGoogle Scholar
  132. Severny, A. B. 1958, Astron. Zh., 35, 335.ADSGoogle Scholar
  133. Shafranov, V. D. 1966, Reviews of Plasma Physics, New York, Consultants Bureau, vol. 2, p. 103.Google Scholar
  134. Schmieder, B., Démoulin, P. Aulanier, G. 2013, Adv. Space Res., 51 (11), 1967.ADSGoogle Scholar
  135. Solov’ev, A. A. 1985, Astrophysics, 23, 595.ADSGoogle Scholar
  136. Somov, B. V. 1986, Astron. Astrophys., 163, 210.ADSzbMATHGoogle Scholar
  137. Sonnerup, B. U. O. 1970, J. Plasma Phys., 4, 161.ADSGoogle Scholar
  138. Srivastava, N., Ambastha, A. Bhatnagar, A. 1991, Solar Phys., 133, 339.ADSGoogle Scholar
  139. Srivastava, A. K., Zaqarashvili, T. V., Kumar, P. Khodachenko, M. L. 2010, Astrophys. J., 715, 292.ADSGoogle Scholar
  140. Srivastava, A. K., Erdélyi, R., Tripathi, D., Fedun, V., Joshi, N. C. Kayshap, P. 2013, Astrophys. J. Lett., 765, 42.ADSGoogle Scholar
  141. Su, Y., Wang, T., Veronig, A., Temmer, M. Gan, W. 2012, Astrophys. J. Lett., 756, L41.ADSGoogle Scholar
  142. Su, Y., Veronig, A. M., Holman, G. D., Dennis, B. R., Wang, T., Temmer, M. Gan, W. 2013, Nature Physics, 9, 489.ADSGoogle Scholar
  143. Sui, L. H. Holman, G. D. 2003, Astrophys. J., 596, L251.ADSGoogle Scholar
  144. Sweet, P. A. 1958, in Electromagnetic Phenomena in Cosmic Physics, edited by Lehnert, B., Cambridge University Press, Cambridge, p. 124.Google Scholar
  145. Sweet, P. A. 1969, Ann. Rev. Astron. Astrophys., 7, 149.ADSGoogle Scholar
  146. Syrovatsky, S. I. 1966, Astron. Zh., 43, 340.ADSGoogle Scholar
  147. Titov, V. S., Priest, E. R. Démoulin, P. 1993, Astron. Astrophys., 276, 564.ADSGoogle Scholar
  148. Titov, V. S. Démoulin, P. 1999, Astron. Astrophys., 351, 707.ADSGoogle Scholar
  149. Titov, V. S., Hornig, G. Démoulin, P. 2002, J. Geophys. Res., 107, doi:  10.1029/2001JA000278.
  150. Török, T. Kliem, B. 2005, Astrophys. J., 630, L97.ADSGoogle Scholar
  151. Török, T., Leake, J. E., Titov, V. S., Archontis, V., Mikić, Z., Linton, M. G., Dalmasse, K., Aulanier, G. Kliem, B. 2014, Astrophys. J. Lett., 782, L10.ADSGoogle Scholar
  152. van Tend, W. Kuperus, M. 1978, Solar Phys., 59, 115.ADSGoogle Scholar
  153. Vourlidas, A., Buzasi, D., Howard, R. A. Esfandiari, E. 2002, in Solar variability: from core to outer frontiers, 10th European Solar Physics Meeting, edited by Wilson, A., ESA SP-506, 1. Noordwijk: ESA Publications Division, p. 91.Google Scholar
  154. Vrsnak, B., Ruzdjac, V., Brajsa, R. Dzubar, A. 1988, Solar Phys., 116, 45.ADSGoogle Scholar
  155. Wang, Y. -M. Stenborg, G. 2010, Astrophys. J. Lett., 719, L181.ADSGoogle Scholar
  156. Wedemeyer-Böhm, S., Scullion, E., Steiner, O., van der Voort, L. R., de La Cruz Rodriguez, J., Fedun, V. Erdélyi, R. 2012, Nature, 486, 505.ADSGoogle Scholar
  157. Withbroe, G. L. Noyes, R. W. 1977, Ann. Rev. Astron. Astrophys., 15, 363.ADSGoogle Scholar
  158. Xu, Y., Liu, C., Jing, J. Wang, H. 2012, Astrophys. J., 761, 52.ADSGoogle Scholar
  159. Zhang, J., Dere, K. P., Howard, R. A., Kundu, M. R. White, S. M. 2001, Astrophys. J., 559, 452.ADSGoogle Scholar
  160. Zirin, H. 1972, Solar Phys., 22, 34.ADSGoogle Scholar
  161. Zirker, J. B., Martin, S. F., Harvey, K. Gaizauskas, V. 1997, Solar. Phys., 175, 27.ADSGoogle Scholar
  162. Zueva, N. M., Solov’ev, L. S. Morozov, A. I. 1976, J. Experimental and Theoretical Phys. Lett., 23, 256.ADSGoogle Scholar
  163. Zuccarello, F. P., Romano, P., Zuccarello, F. Poedts, S. 2013, in Nature of Prominences and their role in Space Weather, Proc. IAU Symp. No. 300, edited by Schmieder, B., Malherbe, J.-M., Wu, S. T., p. 475.Google Scholar
  164. Zuccarello, F. P., Seaton, D. B., Mierla, M., Poedts, S., Rachmeler, L. A., Romano, P. Zuccarello, F. 2014, Astrophys. J., 785, 88.ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

  • Boris Filippov
    • 1
    Email author
  • Olesya Martsenyuk
    • 1
  • Abhishek K. Srivastava
    • 2
  • Wahab Uddin
    • 3
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationRussian Academy of Sciences (IZMIRAN)MoscowRussia
  2. 2.Department of PhysicsIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  3. 3.Aryabhatta Research Institute of Observational Sciences (ARIES)NainitalIndia

Personalised recommendations