Journal of Astrophysics and Astronomy

, Volume 35, Issue 4, pp 639–648 | Cite as

Benford’s Law in Astronomy

  • Theodoros Alexopoulos
  • Stefanos Leontsinis


Benford’s law predicts the occurrence of the n-th digit of numbers in datasets originating from various sources all over the world, ranging from financial data to atomic spectra. It is intriguing that although many features of Benford’s law have been proven, it is still not fully understood mathematically. In this paper we investigate the distances of galaxies and stars by comparing the first, second and third significant digit probabilities with Benford’s predictions. It is found that the distances of galaxies follow the first digit law reasonable well, and that the star distances agree very well with the first, second and third significant digit.


Benford’s law Universe stars galaxies significant digit. 



We would like to thank I. P. Karananas for lengthy discussions on this subject. We would also like to thank Emeritus Professor Anastasios Filippas, and the reviewer for valuable comments and suggestions. The present work was co-funded by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) 2007-1013 ARISTEIA-1893-ATLAS MICROMEGAS.


  1. Baron, E. et al. 1993, Interpretation of the Early Spectra of SN 1993J in M81, The Astrophys. J., 416, 21–23.Google Scholar
  2. Baron, E. et al. 1994, Modeling and Interpretation of the Optical and HST UV Spectrum of SN 1993J, The Astrophys. J., 426, 334–339.Google Scholar
  3. Baron, E. et al. 1995, Non-LTE Spectral Analysis and Model Constraints on SN 1993J, The Astrophys. J., 441, 170–181.Google Scholar
  4. Baron, E. et al. 1996, Prelimianry spectral analysis of SN 1994I, Mon. Not. R. Astron. Soc., 279, 799–803.Google Scholar
  5. Baron, E. et al. 2007, Reddening, Abundances and Line Formation in SNe II, The Astrophys. J., 662, 1148–1155.Google Scholar
  6. Bartel, N. 1985a, Angular diameter determinations of radio supernovae and the distance scale, Supernovae as distance indicators; Proceedings of the Workshop, Cambridge, MA, September 27, 28, 1984 (A86-38101 17-90), Berlin and New York, Springer-Verlag, 107–122.Google Scholar
  7. Bartel, N. 1985b, Hubble’s constant determined using very-long baseline interferometry of a supernova, Nature, 318, 25–30.Google Scholar
  8. Bartel, N. 1988 Determinations of distances to radio sources with VLBI, The impact of VLBI on astrophysics and geophysics; Proceedings of the 129th IAU Symposium, Cambridge, MA, May 10-15, 1987 (A89-13726 03-90), Dordrecht, Kluwer Academic Publishers, 175–184.Google Scholar
  9. Bartel, N. et al. 2003, SN 1979C VLBI: 22 Years of Almost Free Expansion, The Astrophys. J., 591, 301–315.Google Scholar
  10. Bartel, N. et al. 2007, SN 1993J VLBI. IV. A Geometric Distance to M81 with the Expanding Shock Front Method, The Astrophys. J., 668, 924–940.Google Scholar
  11. Benford, F. 1938, The law of anomalous numbers, Proc. Am. Phil. Soc., 78, 551.Google Scholar
  12. Botticella, M. T. et al. 2010, Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered with Pan-Starrs 1 and GALEX, The Astrophys. J. Lett., 717, 52–56.Google Scholar
  13. Boyle, J. 1994, An application of Fourier series to the most significant digit problem, The Amer. Math. Mon., 101 (9), 879–886.Google Scholar
  14. Branch, D. et al. 1981, The Type II Supernova 1979c in M100 and the Distance to the Virgo Cluster, The Astrophys. J., 244, 780–804.Google Scholar
  15. Branchini, E. et al. 1994, Testing the Lease Action Principle in an Ω0 = 1 Universe, The Astrophys. J., 434, 37–45.Google Scholar
  16. Buck, B. et al. 1993, An illustration of Benford’s first digit law using alpha decay half lives, Eur. J. Phys., 14, 59.Google Scholar
  17. Chilukuri, M. et al. 1987, Type-II Supernova Photospheres and the Distance to Supernova 1987A, Atmospheric Diagnostics of Stellar Evolution. Chemical Peculiarity, Mass Loss, and Explosion. Proceedings of the 108th Colloquium of the International Astronomical Union, held at the University of Tokyo, Japan, September 1–4, 1987, Lecture Notes in Physics, Volume 305, ed. K. Nomoto; Publisher, Springer-Verlag, Berlin, New York, 1988. ISBN # 3-540-19478-9. LC # QB806. I18 1987, p. 295.Google Scholar
  18. Chugaj, N. N. 1987, Supernova 1987A - Ha Profile and the Distance of the Large Magellanic Cloud, Astronomicheskii Tsirkulyar No. 1494/May.Google Scholar
  19. Clippe, P., Ausloos, M. 2012, Benford’s law and Theil transform on financial data, arXiv:1208.5896.
  20. Clocchiatti, A. et al. 1995, Spectrophotometric Study of SN 1993J at First Maximum Light, The Astrophys. J., 446, 167–176.Google Scholar
  21. Crotts, A. P. S. et al. 1995, The Circumstellar Envelope of SN 1987A. I, The Shape of the Double-Lobed Nebula and its Rings and the Distance to the Large Maggelanic Cloud, The Astrophys. J., 438, 724–734.Google Scholar
  22. De, A. S., Sen, U. 2011, Benford’s law detects quantum phase transitions similarly as earthquakes, Europhys. Lett., 95, 50008.Google Scholar
  23. Dessart, L. et al. 2006, Quantitative spectroscopic analysis of and distance to SN1999em, Astron. Astrophys., 447 (2), 691–707.Google Scholar
  24. Dessart, L. et al. 2008, Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp, The Astrophys. J., 675, 644–669.Google Scholar
  25. Dong-Dong, N. I. et al. 2009, Benford’s law and β-decay half-lives, Commun. Theor. Phys., 51(4), 713–716.Google Scholar
  26. D’Andrea, C. B. et al. 2010, Type II-P Supernovae from the SDSS-II Supernova Survey and the Standardized Candle Method, The Astrophys. J., 708, 661–674.Google Scholar
  27. Eastman, R. G. et al. 1989, Model Atmospheres for SN 1987A and the Distance to the Large Magellanic Cloud, The Astrophys. J., 347, 771–793.Google Scholar
  28. Eastman, R. G. et al. 1996, The Atmospheres of Type II Supernovae and the Expanding Photosphere Method, The Astrophys. J., 466, 911–937.Google Scholar
  29. Elmhamdi, A. et al. 2003, Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation, Mon. Not. R. Astron. Soc., 338, 939–956.Google Scholar
  30. Fernley, J. et al. 1998, The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions, Astron. Astrophys., 330, 515–520.Google Scholar
  31. Fraser, M. et al. 2011, SN 2009md: Another Faint Supernova from a Low-Mass Progenitor, Mon. Not. R. Astron. Soc., 417, 1417–1433.Google Scholar
  32. Garnavich, P. et al. 1999, Supernova 1987A in the Large Magellanic Cloud, IAU Circ., 7102, 1.Google Scholar
  33. Gould, A. 1994, The Ring Around Supernova 1987A Revisited. I. Ellipticity of the Ring, The Astrophys. J., 425, 51–56.Google Scholar
  34. Gould, A. 1995, Supernova Ring Revisited. II. Distance to the Large Magellanic Cloud, The Astrophys. J., 452, 189–1994.Google Scholar
  35. Gould, A. et al. 1998, Upper Limit to the Distance to the Large Magellanic Cloud, The Astrophys. J., 494, 118–124.Google Scholar
  36. Gurugubelli et al. 2008, Photometric and spectroscopic evolution of type II-P supernova SN 2004A, Bull. Astron. Soc. India, 36 (2-3), 79–97.Google Scholar
  37. Hamuy, M. et al. 2001, The Distance to SN 1999em from the Expanding Photosphere Method, The Astrophys. J., 558, 615–642.Google Scholar
  38. Hanuschik, R. W. et al. 1991, Absorption Line Velocities and the Distance to Supernova 1987A, Astron. Astrophys., 249, 36–42.Google Scholar
  39. Hendry, M. A. et al. 2006, SN 2004A: Another Type II-P Supernova with a Red Supergiant Progenitor, Mon. Not. R. Astron. Soc., 369, 1303–1320.Google Scholar
  40. Hill, T. P. 1995a, Base-Invariance Implies Benford’s Law, Proc. Amer. Math. Soc., 123.3, 887–895.Google Scholar
  41. Hill, Theodore P. 1995b, The significant-digit phenomenon, The Amer. Math. Mon., 102 (4), 322–327.Google Scholar
  42. Hoeflich, P. 1987, Model calculations for scattering dominated atmospheres and the use of supernovae as distance indicators, Nuclear astrophysics; Proceedings of the Workshop, Tegernsee, Federal Republic of Germany, Apr. 21–24, 1987 (A89-10202 01-90), Berlin and New York, Springer-Verlag, 307–315.Google Scholar
  43. Hopee, F. M. 2013, Benford’s law and distractors in multiple choice exams, arXiv:1311.7606.
  44. Inserra, C. et al. 2012, Quantitative Photospheric Spectral Analysis of the Type IIP Supernova 2007od, Mon. Not. R. Astron. Soc., 422, 1178–1185.Google Scholar
  45. Iwamoto, K. et al. 1994, Theoretical Light Curves for the Type Ic Supernova SN 1994I, The Astrophys. J., 437, 115–118.Google Scholar
  46. Jones, M. I. et al. 2009, Distance Determination to 12 Type II Supernovae Using the Expanding Photosphere Method, The Astrophys. J., 696, 1176–1194.Google Scholar
  47. Kasen, D. et al. 2009, Type II Supernovae: Model Light Curves and Standard Candle Relationships, The Astrophys. J., 703, 2205–2216.Google Scholar
  48. Kirshner, R. P. et al. 1974, Distances to Extragalactic Supernovae, The Astrophys. J., 193, 27–36.Google Scholar
  49. Leonard, Douglas C. et al. 2002a, A Study of the Type II-Plateau Supernova 1999gi and the Distance to its Host Galaxy, NGC 3184, The Astron. J., 124 (5), 2490–2505.Google Scholar
  50. Leonard, D. C. et al. 2002b, The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method, Publ. Astron. Soc. Pacific, 114, 35–64.Google Scholar
  51. Leonard, D. C. et al. 2003, The Cepheid Distance to NGC 1637: A Direct Test of the Expanding Photosphere Method Distance to SN 1999em, The Astrophys. J., 594, 247–278.Google Scholar
  52. McCall, M. L. 1993, The Distance to the Large Magellanic Cloud from SN 1987A, The Astrophys. J., 417, 75–77.Google Scholar
  53. Mitchell, R. C. et al. 2002, Detailed Spectroscopic Analysis of SN 1987A: The Distance to the Large Magellanic Cloud Using the Spectral-Fitting Expanding Atmosphere Method, The Astrophys. J., 574, 293–305.Google Scholar
  54. Nadyozhin, D. K. 2003, Explosion Energies, Nickel Masses and Distances of Type II Plateau Supernovae, Mon. Not. R. Astron. Soc., 346, 97–104.Google Scholar
  55. Newcomb, S. 1881, Note on the frequency of use of the different digits in natural numbers, Am. J. Math., 4 (1/4), 39–40.Google Scholar
  56. Nugent, P. et al. 2006, Toward a Cosmological Hubble Diagram for Type II-P Supernovae, The Astrophys. J., 645, 841–850.Google Scholar
  57. Olivares, F. E. et al. 2010, The Standardized Candle Method for type II Plateau Supernovae, The Astrophys. J., 715, 833–853.Google Scholar
  58. Pain, J. C. 2008, Benford’s law and complex atomic spectra, Phys. Rev. E, 77, 012102.Google Scholar
  59. Panagia, N. 1998, New Distance Determination to the LMC, Memorie della Societa Astronomia Italiana, 69, 225.Google Scholar
  60. Panagia, N. 1999, Distance to SN 1987 A and the LMC, New Views of the Magellanic Clouds, IAU Symposium #190, (eds) Y.-H. Chu, N. Suntzeff, J. Hesser & D. Bohlender, ISBN: 1-58381-021-8, p. 549.Google Scholar
  61. Panagia, N. et al. 1986, Subluminous, Radio Emitting Type I Supernovae, The Astrophys. J., 300, 55–58.Google Scholar
  62. Panagia, N. et al. 1991, Properties of the SN 1987A Circumstellar Ring and the Distance to the Large Magellanic Cloud, The Astrophys. J., 380, 23–26.Google Scholar
  63. Poaznanski, D. et al. 2009, Improved Standardization of Type II-P Supernovae: Application to an Expanded Sample, The Astrophys. J., 694, 1067–1079.Google Scholar
  64. Richmond, M. W. et al. 1996, UBVRI Photometry of the Type Ic SN 1994I in M51, The Astron. J., 111(1).Google Scholar
  65. Romaniello, M. et al. 2000, Hubble Space Telescope Observations of the Large Magellanic Cloud Field Around SN 1987A: Distance Detetrmination with Red Clump and Tup of the Red Giant Branch Stars, The Astrophys. J., 530, 738–743.Google Scholar
  66. Roy, R. et al. 2011, SN 2008in – Bridging the Gap Between Normal and Faint Supernovae of Type IIP, The Astrophys. J., 736, 76.Google Scholar
  67. Schmidt, B. P. 1992, Expanding Photospheres of Type II Supernovae and the Extragalactic Distance Scale, American Astronomical Society, 181st AAS Meeting, #107.04D, Bull. Amer. Astron. Soc., 24, 1292.Google Scholar
  68. Schmidt-Kaler, T. 1992, The Distance to the Large Magellanic Cloud from Observations of SN1987A, Variable Stars and Galaxies, in honour of M. W. Feast on his retirement, ASP Conference Series, (ed.) Warner B., vol. 30 p. 195.Google Scholar
  69. Schmidt, B. P. et al. 1992, Expanding Photospheres of Type II Supernovae and the Extragalactic Distance Scale, The Astrophys. J., 395, 366–386.Google Scholar
  70. Schmidt, Brian P. et al. 1993a, The unusual supernova SN1993J in the galaxy M81, Nature, 364, 600–602.Google Scholar
  71. Schmidt, Brian P. et al. 1993b, Type II Supernovae, Expanding Photospheres, and the Extragalactic Distance Scale, Thesis (Ph.D.) – Harvard University, 1993. Source: Dissertation Abstracts International, Volume 54–11, Section B, 5717.Google Scholar
  72. Schmidt, B. P. et al. 1994a, The Expandind Photosphere Method Applied to SN 1992am At cz = 14600 km/s, The Astron. J., 107, 4.Google Scholar
  73. Schmidt, B. P. et al. 1994b, The Distance to Five Type II Supernovae Using the Expanding Photosphere Method and the Value of H0, The Astrophys. J., 432, 42–48.Google Scholar
  74. Schmutz, W. et al. 1990, NON-LTE Model Calculations for SN 1987A and the Extragalactic Distance Scale, The Astrophys. J., 355, 255–270.Google Scholar
  75. Shao, L., Ma, B. Q. 2009, First digit distribution of hadron full width, Mod. Phys. Lett. A, 24, 3275–3282.Google Scholar
  76. Shao, L., Ma, B. Q. 2010, First-digit law in nonextensive statistics, Phys. Rev. E, 82 (041110).Google Scholar
  77. Sparks, W. B. 1994, A Direct Way to Measure the Distances of Galaxies, The Astrophys. J., 433, 19–28.Google Scholar
  78. Sonnenorn, G. et al. 1997, The Evolution of Ultraviolet Emission Lines from Circumstellar Material Surrounding SN 1987A, The Astrophys. J., 477, 848–864.Google Scholar
  79. Takats, V. J. 2012, Improved distance determination to M 51 from supernovae 2011dh and 2005cs, Astron. Astrophys., 540 (A93), 7.Google Scholar
  80. Takats, K. et al. 2006, Distance Estimate and Progenitor Characteristics of SN 2005cs in M51, Mon. Not. R. Astron. Soc., 372, 1735–1740.Google Scholar
  81. Takats, K. et al. 2012, Measuring Expansion Velocities in Type II-P Supernovae, Mon. Not. R. Astron. Soc., 419, 2783–2796.Google Scholar
  82. The HYG Database 2011,
  83. Van Dyk, S. D. et al. 2006, The Light Echo Around Supernova 2003gd in Messier 74, Publ. Astron. Soc. Pacific, 118, 351–357.Google Scholar
  84. Vinko, J. et al. 2006, The First Year of SN 2004dj in NGC 2403, Mon. Not. R. Astron. Soc., 369, 1780–1796.Google Scholar
  85. Wagoner, R. V. et al. 1988, Supernova 1987A: A Test of the Improved Baade Method of Distance Determination, BAAS 08/1988, 20, 985.Google Scholar
  86. Walker, A. R. 1998, The Distances of the Maggelanic Clouds, arXiv:astro-ph/9808336v1.
  87. Wlodarksi, J. 1971, Fibonacci and Lucas numbers tend to obey Benford’s law, Westhoven, Federal Republic of Germany.Google Scholar
  88. Wojcik, M. R. 2013, Notes on scale-invariance and base-invariance for Benford’s law, arXiv:1307.3620.

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  1. 1.Department of PhysicsNational Technical University of AthensAthensGreece.
  2. 2.Physics DepartmentBrookhaven National LaboratoryUptonUSA.

Personalised recommendations