Journal of Astrophysics and Astronomy

, Volume 34, Issue 4, pp 341–348 | Cite as

Satellite Orbital Precessions Caused by the Octupolar Mass Moment of a Non-Spherical Body Arbitrarily Oriented in Space

  • G. Renzetti


I consider a satellite moving around a non-spherical body of mass M and equatorial radius R, and calculate its orbital precessions caused by the body’s octupolar mass moment J 4. I consider only the effects averaged over one orbital period T of the satellite. I give exact formulas, not restricted to any special values of either the eccentricity e or the inclination i of the satellite’s orbit. I do not assume any preferential orientation for the body’s spin axis \({\boldsymbol{\hat{{\mathbf{k}}}}}\) because in many cases of potential interest (exoplanets, neutron stars, black holes) it is poorly known or unknown at all.


Experimental studies of gravity—satellite orbits—harmonics of the gravity potential field 


  1. Anand, S. P. S. 1965, Proc. Nat. Acad. Sci. 54, 23.ADSCrossRefMathSciNetGoogle Scholar
  2. Anderson, J. D., Jacobson, R. A., Lau, E. L., Moore, W. B., Schubert, G. 2001a, Geophys. Res. 106, 32963.ADSCrossRefGoogle Scholar
  3. Anderson, J. D., Jacobson, R. A., McElrath, T. P. et al. 2001b, Icarus, 153, 157.Google Scholar
  4. Arutyunyan, G. G., Sedrakyan, D. M., Chubaryan, É. V. 1971a, Sov. Astron., 15, 390.ADSGoogle Scholar
  5. Arutyunyan, G. G., Sedrakyan, D. M., Chubaryan, É. V. 1971b, Astrophys., 7, 274.ADSCrossRefGoogle Scholar
  6. Boshkayev, K., Quevedo, H., Ruffini, R. 2012, Phys. Rev. D, 86, 064043.ADSCrossRefGoogle Scholar
  7. Boshkayev, K., Izzo, L., Rueda Hernandez, J. A., Ruffini, R. 2013a, AA, 555, A151.ADSCrossRefGoogle Scholar
  8. Boshkayev, K., Rueda, J. A., Ruffini, R., Siutsou, I. 2013b, AJ, 762, 117.ADSGoogle Scholar
  9. Brumberg, V. A. 1991, Essential Relativistic Celestial Mechanics (Adam Hilger, Bristol).Google Scholar
  10. Capderou, M. 2005, Satellites. Orbits and Missions (Springer-Verlag France, Paris).Google Scholar
  11. Chruściel, P. 1994, in Differential Geometry and Mathematical Physics, Contemporary Mathematics, vol. 170, edited by J. Beem & K. Duggal, pp. 23–49 (Providence: AMS).Google Scholar
  12. Cook, A. H. 1963, Space Sci. Rev., 2, 355.ADSCrossRefGoogle Scholar
  13. Damiani, C., Rozelot, J. P., Lefebvre, S., Kilcik, A., Kosovichev, A. G. 2011, J. Atmos. Solar-Terrestrial Phys., 73, 241.ADSCrossRefGoogle Scholar
  14. Domiciano de Souza, A., Kervella, P., Jankov, S. et al. 2003, AA, 407, L47.Google Scholar
  15. Dufton, P. L., Dunstall, P. R., Evans, C. J. et al. 2011, AJl, 743, L22.Google Scholar
  16. Geroch, R. 1970, J. Math. Phys., 11, 2580.Google Scholar
  17. Giacaglia, G. E. O. 1964, AJ, 69, 303.Google Scholar
  18. Godier, S., Rozelot, J.-P. 1999, AA, 350, 310.Google Scholar
  19. Granada, A., Ekström, S., Georgy, C. et al. 2013, AA, 553, A25.Google Scholar
  20. Hansen, R. O. 1974, J. Math. Phys., 15, 46.ADSCrossRefzbMATHGoogle Scholar
  21. Hartle, J. B. 1967, AJ, 150, 1005.ADSGoogle Scholar
  22. Heimberger, J., Soffel, M., Ruder, H. 1990, Celest. Mech. Dyn. Astron., 47, 205.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. Heusler, M. 1998, Living Rev. Relativ., 1, 6.ADSMathSciNetGoogle Scholar
  24. Hirata, R. 1995, Publ. Astron. Soc. Japan, 47, 195.ADSGoogle Scholar
  25. Hirt, C., Claessens, S. J., Kuhn, M., Featherstone, W. E. 2012, Planet. Space Sci., 67, 147.ADSCrossRefGoogle Scholar
  26. Iess, L., Rappaport, N. J., Jacobson, R. A. et al. 2010, Science, 327, 1367.ADSCrossRefGoogle Scholar
  27. Iess, L., Rappaport, N. J., Tortora, P. et al. 2007, Icarus, 190, 585.ADSCrossRefGoogle Scholar
  28. Iorio, L. 2001, Il Nuovo Cimento B, 116, 777.Google Scholar
  29. Iorio, L. 2002, Phys. Lett. A, 298, 315.Google Scholar
  30. Iorio, L. 2003, Celest. Mech. Dyn. Astron., 86, 277.Google Scholar
  31. Iorio, L. 2005a, AA, 431, 385.Google Scholar
  32. Iorio, L. 2005b, AA, 433, 385.Google Scholar
  33. Iorio, L. 2006a, J. Geodesy, 80, 128.Google Scholar
  34. Iorio, L. 2006b, Classical Quantum Gravity, 23, 5451.Google Scholar
  35. Iorio, L. 2007a, Astrophys. Space Sci., 312, 337.Google Scholar
  36. Iorio, L. 2007b, Astrophys. Space Sci., 310, 73.Google Scholar
  37. Iorio, L. 2008a, Int. J. Modern Phys. D, 17, 815.Google Scholar
  38. Iorio, L. 2008b, Astrophys. Space Sci., 318, 51.Google Scholar
  39. Iorio, L. 2009a, Space Sci. Rev., 148, 363.Google Scholar
  40. Iorio, L. 2009b, AJ, 137, 3615.Google Scholar
  41. Iorio, L. 2009c, Gen. Relativ. Gravit., 41, 1717.ADSCrossRefzbMATHGoogle Scholar
  42. Iorio, L. 2010a, Central European J. Phys., 8, 25.ADSCrossRefGoogle Scholar
  43. Iorio, L. 2010b, Central European J. Phys., 8, 509.ADSCrossRefGoogle Scholar
  44. Iorio, L. 2011a, Astrophys. Space Sci., 331, 485.ADSCrossRefGoogle Scholar
  45. Iorio, L. 2011b, Int. J. Modern Phys. D, 20, 181.ADSCrossRefzbMATHGoogle Scholar
  46. Iorio, L. 2011c, Gen. Relativ. Gravit., 43, 1697.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  47. Iorio, L. 2011d, Phys. Rev. D, 84, 124001.ADSCrossRefGoogle Scholar
  48. Iorio, L. 2011e, Europhys. Lett., 96, 30001.ADSCrossRefGoogle Scholar
  49. Iorio, L. 2012a, JHEP, 5, 73.ADSCrossRefGoogle Scholar
  50. Iorio, L. 2012b, Adv. Space Res., 50, 334.Google Scholar
  51. Iorio, L. 2013, Classical Quantum Gravity, 30, 195011.Google Scholar
  52. Iorio, L., Ciufolini, I., Pavlis, E. C. et al. 2004, Classical Quantum Gravity, 21, 2139.Google Scholar
  53. Iorio, L., Lichtenegger, H. I. M., Ruggiero, M. L., Corda, C. 2011, Astrophys. Space Sci., 331, 351.Google Scholar
  54. Iorio, L., Ruggiero, M., Corda, C. 2013, Acta Astronautica, 91, 141.Google Scholar
  55. Jacobson, R. A., Antreasian, P. G., Bordi, J. J. et al. 2006, Astron. J., 132, 2520.Google Scholar
  56. Johnson, W., Winget, D., Douglass, D., Horn, H. 1980, in Nonradial and Nonlinear Stellar Pulsation, Lecture Notes in Physics, vol. 125, edited by H. Hill & W. Dziembowski, pp. 357–368 (Springer Berlin Heidelberg).Google Scholar
  57. Kaula, W. 2000, Theory of Satellite Geodesy: Applications of Satellites to Geodesy (Dover, New York).Google Scholar
  58. King-Hele, D. G. 1961, Geophys. J. Int., 4, 3.Google Scholar
  59. King-Hele, D. G. 1983, Geophys. J. Int., 74, 7.Google Scholar
  60. King-Hele, D. G., Cook, G. E. 1973, Nature, 246, 86.Google Scholar
  61. King-Hele, D. G., Cook, G. E., Rees, J. M. 1963, Nature, 197, 785.ADSCrossRefGoogle Scholar
  62. Konopliv, A. S., Banerdt, W. B., & Sjogren, W. L. 1999, Icarus, 139, 3.ADSCrossRefGoogle Scholar
  63. Konopliv, A. S., Yoder, C. F., Standish, E. M., Yuan, D.-N., Sjogren, W. L. 2006, Icarus, 182, 23.ADSCrossRefGoogle Scholar
  64. Kozai, Y. 1966, Space Sci. Rev., 5, 818.ADSCrossRefGoogle Scholar
  65. Laarakkers, W. G., & Poisson, E. 1999, Astrophys. J., 512, 282.ADSCrossRefGoogle Scholar
  66. Lemoine, F., Kenyon, S., Factor, J. et al. 1998, The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential ModelEGM96, NASA Technical Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt, USA.Google Scholar
  67. Lucchesi, D. M. 2003, Phys. Lett. A, 318, 234.ADSCrossRefGoogle Scholar
  68. Lucchesi, D. M. 2005, Int. J. Modern Phys. D, 14, 1989.ADSCrossRefzbMATHGoogle Scholar
  69. Lucchesi, D. M. 2007, Adv. Space Res., 39, 324.Google Scholar
  70. Lucchesi, D. M. 2011, Adv. Space Res., 47, 1232.Google Scholar
  71. Lucchesi, D. M., Peron, R. 2010, Phys. Rev. Lett., 105, 231103.Google Scholar
  72. Lydon, T. J., Sofia, S. 1996, PRL, 76, 177.Google Scholar
  73. McAlister, H. A., ten Brummelaar, T. A., Gies, D. R. et al. 2005, AJ, 628, 439.Google Scholar
  74. Meilland, A., Stee, P., Chesneau, O., Jones, C. 2009, AA, 505, 687.Google Scholar
  75. Nemravová, J., Harmanec, P., Kubát, J. et al. 2010, AA, 516, A80.Google Scholar
  76. Null, G. W., Anderson, J. D., Wong, S. K. 1975, Science, 188, 476.Google Scholar
  77. O’Keefe, J. A., Eckels, A., Squires, R. K. 1959, Science, 129, 565.Google Scholar
  78. Pappas, G., Apostolatos, T. A. 2012, Phys. Rev. Lett., 108, 231104.Google Scholar
  79. Pijpers, F. P. 1998, MNRAS, 297, L76.Google Scholar
  80. Pireaux, S., Rozelot, J.-P. 2003, Astrophys. Space Sci., 284, 1159.Google Scholar
  81. Reigber, C., Schmidt, R., Flechtner, F. et al. 2005, J. Geodyn., 39, 1.CrossRefGoogle Scholar
  82. Roxburgh, I. W. 2001, AA, 377, 688.ADSCrossRefGoogle Scholar
  83. Rozelot, J., Pireaux, S., Lefebvre, S., Corbard, T. 2004, arXiv:astro-ph/0403382.
  84. Rozelot, J.-P., Damiani, C. 2011, European Phys. J. H, 36, 407.ADSCrossRefGoogle Scholar
  85. Rozelot, J. P., Fazel, Z. 2013, Solar Physics.Google Scholar
  86. Shibata, M. 1998, Prog. Theor. Phys., 99, 69.ADSCrossRefGoogle Scholar
  87. Simon, W., Beig, R. 1983, J. Math. Phys., 24, 1163.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  88. Singh, J., Umar, A. 2013, Astrophys. Space Sci., at press.Google Scholar
  89. Smith, D. E., Zuber, M. T., Phillips, R. J. et al. 2012, Science, 336, 214.ADSCrossRefGoogle Scholar
  90. Soffel, M., Wirrer, R., Schastok, J., Ruder, H., Schneider, M. 1988, Celest. Mech., 42, 81.ADSCrossRefMathSciNetGoogle Scholar
  91. Stergioulas, N. 2003, Living Rev. Relativ., 6, 3.ADSMathSciNetGoogle Scholar
  92. Tapley, B. D., Bettadpur, S., Watkins, M., Reigber, C. 2004, Geophys. Res. Lett., 31, L09607.ADSCrossRefGoogle Scholar
  93. Ulrich, R. K., Hawkins, G. W. 1981, Astrophysical J., 246, 985.ADSCrossRefGoogle Scholar
  94. van Belle, G. T. 2012, Astron. Astrophys. Rev., 20, 51.Google Scholar
  95. van Belle, G. T., Ciardi, D. R., Thompson, R. R., Akeson, R. L., Lada, E. A. 2001, Astrophysical J., 559, 1155.Google Scholar
  96. Vigeland, S. J. 2010, Phys. Rev. D, 82, 104041.Google Scholar
  97. Wagner, C. A. 1973, J. Geophys. Res., 78, 3271.Google Scholar
  98. Xu, Y., Yang, Y., Zhang, Q., Xu, G. 2011, MNRAS, 415, 3335.Google Scholar
  99. Yan, J., Zhong, Z., Li, F. et al. 2013, Adv. Space Res., 52, 512.ADSCrossRefGoogle Scholar
  100. Yoon, J., Peterson, D. M., Kurucz, R. L., Zagarello, R. J. 2010, Astrophysical J., 708, 71.ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  1. 1.PescaraItaly

Personalised recommendations