Advertisement

Journal of Astrophysics and Astronomy

, Volume 33, Issue 4, pp 399–416 | Cite as

Revisiting the Cosmological Principle in a Cellular Framework

  • L. Zaninetti
Article

Abstract

The cosmological principle in its various versions states that: (i) the galaxy does not occupy a particular position, (ii) the Universe is homogeneous and isotropic. This statement does not agree with the recent astronomical observations in the range z lower than 0.05 which are in agreement with a cellular structure of the Universe. Here we present a local analysis of the inhomogeneity of the Universe. When z is greater than 0.05 our analysis cannot be applied because the astronomical sample of galaxies here processed is not complete. The two tools of the Poisson Voronoi Tessellation (PVT) and the luminosity function for galaxies allow building a new version of the local cosmological principle.

Keywords

Cosmology: Miscellaneous cosmology—observations cosmology—theory 

References

  1. Bagla, J. S., Yadav, J., Seshadri, T. R. 2008, Mon Not. R. Astron. Soc., 390, 829.ADSCrossRefGoogle Scholar
  2. Behr, A. 1951, Astron. Nachr., 279, 97.ADSCrossRefGoogle Scholar
  3. Blanton, M. R., Roweis, S. 2007, Astron. J., 133, 734.ADSCrossRefGoogle Scholar
  4. Borgani, S., Murante, G., Provenzale, A., Valdarnini, R. 1993, Phys. Rev. E47, 3879.ADSGoogle Scholar
  5. Brynjolfsson, A. 2009, in: Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific Conference Series (ed.) F. Potter, vol. 413, pp. 169–189.Google Scholar
  6. Cole, S. et al. 2001, Mon. Not. R. Astron. Soc., 326, 255.ADSCrossRefGoogle Scholar
  7. Colless, M., Dalton, G., Maddox, S. et al. 2001, Mon. Not. R. Astron. Soc., 328, 1039.ADSCrossRefGoogle Scholar
  8. Crook, A. C., Huchra, J. P., Martimbeau, N., Masters, K. L., Jarrett, T., Macri, L. M. 2007, Astrophys. J., 655, 790.ADSCrossRefGoogle Scholar
  9. Geller, M. J., Huchra, J. P. 1989, Science, 246, 897.ADSCrossRefGoogle Scholar
  10. Hogg, D. W., Eisenstein, D. J., Blanton, M. R., Bahcall, N. A., Brinkmann, J., Gunn, J. E., Schneider, D. P. 2005, Astrophys. J., 624, 54.ADSCrossRefGoogle Scholar
  11. Hubble, E. 1929, Proc. Natl. Acad. Sci., 15, 168.ADSzbMATHCrossRefGoogle Scholar
  12. Huchra, J. P., Macri, L. M., Masters, K. L. et al. 2012, Astrophys. J. Suppl., 199, 26.ADSCrossRefGoogle Scholar
  13. Jarrett, T. 2004, Publ. Astron. Soc. Australia, 21, 396.ADSCrossRefGoogle Scholar
  14. Jones, D. H., Saunders, W., Colless, M., Read, M. A., Parker, Q. A. 2004, Mon. Not. R. Astron. Soc., 355, 747.ADSCrossRefGoogle Scholar
  15. Keel, W. C. 2007, The road to galaxy formation (Springer, Berlin).Google Scholar
  16. Keselman, J. A., Nusser, A., Peebles, P. J. E. 2010, Phys. Rev. D81, 063521.ADSGoogle Scholar
  17. Liddle, A., Loveday, J. 2009, The Oxford Companion to Cosmology (Oxford University Press, Oxford).Google Scholar
  18. Malmquist, K. 1920, Lund Medd. Ser. II, 22, 1.Google Scholar
  19. Malmquist, K. 1922, Lund Medd. Ser. I, 100, 1.Google Scholar
  20. Mészáros, A., Balazs, L. G., Bagoly, Z., Veres, P. 2009a, in: American Institute of Physics Conference Series, American Institute of Physics Conference Series (eds) C. Meegan, C. Kouveliotou & N. Gehrels, vol. 1133, pp. 483–485.Google Scholar
  21. Mészáros, A., Balázs, L. G., Bagoly, Z., Veres, P. 2009b, Baltic Astron., 18, 293.ADSGoogle Scholar
  22. Okabe, A., Boots, B., Sugihara, K. 1992, Spatial Tessellations, Concepts and Applications of Voronoi diagrams (Wiley, Chichester, New York).Google Scholar
  23. Padmanabhan, T. 1996, Cosmology and Astrophysics through Problems (Cambridge University Press, Cambridge).Google Scholar
  24. Pan, D. C., Vogeley, M. S., Hoyle, F., Choi, Y.-Y., Park, C. 2012, Mon. Not. R. Astron. Soc., 421, 926.ADSCrossRefGoogle Scholar
  25. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. 1992, Numerical Recipes in FORTRAN, The Art of Scientific Computing (Cambridge University Press, Cambridge).Google Scholar
  26. Ryden, B. 2003, Introduction to Cosmology (Addison Wesley, San Francisco, CA, USA).Google Scholar
  27. Sarkar, P., Yadav, J., Pandey, B., Bharadwaj, S. 2009, Mon. Not. R. Astron. Soc., 399, L128.ADSCrossRefGoogle Scholar
  28. Schechter, P. 1976, Astrophys. J., 203, 297.ADSCrossRefGoogle Scholar
  29. Schwarz, D. J. 2009, eprint arXiv:0905.0384.Google Scholar
  30. van de Weygaert, R., Icke, V. 1989, Astron. Astrophys., 213, 1.ADSGoogle Scholar
  31. Yadav, J. K., Bagla, J. S., Khandai, N. 2010, Mon. Not. R. Astron. Soc., 405, 2009.ADSGoogle Scholar
  32. Zaninetti, L. 1991, Astron. Astrophys., 246, 291.ADSGoogle Scholar
  33. Zaninetti, L. 1995, Astron. Astrophys. Suppl., 109, 71.ADSGoogle Scholar
  34. Zaninetti, L. 2006, Chinese J. Astron. Astrophys., 6, 387.ADSCrossRefGoogle Scholar
  35. Zaninetti, L. 2009, Phys. Lett., A373, 3223.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Zaninetti, L. 2010, Revista Mexicana de Astronomia y Astrofisica, 46, 115.ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaTorinoItaly

Personalised recommendations