Advertisement

Journal of Astrophysics and Astronomy

, Volume 30, Issue 2, pp 93–118 | Cite as

The Ks-band Tully-Fisher Relation — A determination of the Hubble parameter from 218 ScI galaxies and 16 galaxy clusters

  • David G. Russell
Article

Abstract

The value of Hubble parameter (H0) is determined using the morphologically type dependent Ks-band Tully-Fisher Relation (K-TFR). The slope and zero point are determined using 36 calibrator galaxies with ScI morphology. Calibration distances are adopted from direct Cepheid distances, and group or companion distances derived with the Surface Brightness Fluctuation Method or Type Ia Supernova. It is found that a small morphological type effect is present in the K-TFR such that ScI galaxies are more luminous at a given rotational velocity than Sa/Sb galaxies and Sbc/Sc galaxies of later luminosity classes. Distances are determined to 16 galaxy clusters and 218 ScI galaxies with minimum distances of 40.0 Mpc. From the 16 galaxy clusters a weighted mean Hubble parameter of H0 = 84.2 ± 6 km s−1 Mpc−1 is found. From the 218 ScI galaxies a Hubble parameter of H0 = 83.4 ± 8 km s−1 Mpc−1 is found. When the zero point of K-TFR is corrected to account for recent results that find a Large Magellanic Cloud distance modulus of 18.39±0.05, a Hubble parameter of 88.0 ± 6 km s−1 Mpc−1 is found. Effects from Malmquist bias are shown to be negligible in this sample as galaxies are restricted to a minimum rotational velocity of 150 km s−1. It is also shown that the results of this study are negligibly affected by the adopted slope for the K-TFR, inclination binning, and distance binning. A comparison with the results of the Hubble Key Project (Freedman et al. 2001) is made. Discrepancies between the K-TFR distances and the HKP I-TFR distances are discussed. Implications for Λ-CDM cosmology are considered with H0 = 84 km s−1 Mpc−1. It is concluded that it is very difficult to reconcile the value of H0 found in this study with ages of the oldest globular clusters and matter density of the universe derived from galaxy clusters in the context of Λ-CDM cosmology.

Key words

Distance scale galaxies: distances and redshifts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajhar, E., Tonry, J., Blakeslee, J., Riess, A., Schmidt, B. 2001, ApJ, 559, 584.CrossRefADSGoogle Scholar
  2. An, D., Terndrup, D., Pinsonneault, M. 2007, ApJ, 671, 1640.CrossRefADSGoogle Scholar
  3. Bassino, L., Richtler, T., Dirsch, B. 2008, MNRAS, 386, 1145.CrossRefADSGoogle Scholar
  4. Benedict, F. et al. 2007, AJ, 133, 1810.CrossRefADSGoogle Scholar
  5. Bernstein, G. M., Guhathakurta, P., Raychaudhury, S., Giovanelli, R., Haynes, M. P., Herter, T., Vogt, N. P. 1994, AJ, 107, 1962.CrossRefADSGoogle Scholar
  6. Bregman, J. N., Temi, P., Bregman, J. D. 2006, ApJ, 647, 265.CrossRefADSGoogle Scholar
  7. Bottinelli, L., Gouguenheim, L., Paturel, G., Teerikorpi, P. 1986, A&A, 166, 393.ADSGoogle Scholar
  8. Bottinelli, L., Gouguenheim, L., Paturel, G., Teerikorpi, P. 1988, ApJ, 328, 4.CrossRefADSGoogle Scholar
  9. Catelan, M., Cortes, C. 2008, ApJ, 676, L135.CrossRefADSGoogle Scholar
  10. Carlberg, R., Yee, H. K., Ellingson, E., Abraham, R., Gravel, P., Morris, S., Pritchet, C. 1996, ApJ, 462, 32.CrossRefADSGoogle Scholar
  11. Drozdovsky, I., Karachentsev, I. 2000, A&AS, 142, 425.CrossRefADSGoogle Scholar
  12. Dunkley, J. et al. 2009, ApJS, 180, 306.CrossRefADSGoogle Scholar
  13. Feast, M., Laney, C., Kinman, T., van Leeuwen, F., Whitelock, P. 2008, MNRAS, 386, 2115.CrossRefADSGoogle Scholar
  14. Federspiel, M., Sandage, A., Tammann, G. A. 1994, ApJ, 430, 29.CrossRefADSGoogle Scholar
  15. Ferrarese, L., Mould, J. R., Kennicutt, R. C., Huchra, J. et al. 2000, ApJ, 529, 745.CrossRefADSGoogle Scholar
  16. Fouque, P. et al. 2007, A&A, 476, 73.CrossRefADSGoogle Scholar
  17. Freedman, W. L. et al. 2001, ApJ, 553, 47.CrossRefADSGoogle Scholar
  18. Giovanelli, R., 1996, preprint astro-ph/9610129.Google Scholar
  19. Giovanelli, R., Haynes, M. P., da Costa, L. N., Freudling, W., Salzer, J. J., Wegner, G. 1997a, ApJL, 477, 1.CrossRefADSGoogle Scholar
  20. Giovanelli, R., Haynes, M. P., Herter, T., Vogt, N. P., da Costa, L.N., Freudling, W., Salzer, J. J., Wegner, G. 1997b, AJ, 113, 53.CrossRefADSGoogle Scholar
  21. Grocholski, A., Sarajedini, A., Olsen, K., Tiede, G., Mancone, C. 2007, AJ, 134, 680.CrossRefADSGoogle Scholar
  22. Haynes, M., Giovanelli, R., Chamaraux, P. et al. 1999, AJ, 117, 2039.CrossRefADSGoogle Scholar
  23. Hinshaw, G., Weiland, J., Hill, R. et al. 2009, ApJS, 180, 225.CrossRefADSGoogle Scholar
  24. Hubble, E. 1929, PNAS, 15, 168.zbMATHCrossRefADSGoogle Scholar
  25. Kannappan, S. J., Fabricant, D. G., Franx, M. 2002, PASP, 114, 577.CrossRefADSGoogle Scholar
  26. Karachensev, I., Mitronova, S., Karachentseva, V., Kudrya, Y., Jarrett, T. 2002, A&A, 396, 431.CrossRefADSGoogle Scholar
  27. Komatsu, E. et al. 2009, ApJS, 180, 330.CrossRefADSGoogle Scholar
  28. Lee, H., Yoon, S., Lee, Y. 2001, ASPC, 245, 445.ADSGoogle Scholar
  29. Macri, L., Stanek, K., Bersier, D., Greenhill, L., Reid, M. 2006, ApJ, 652, 1133.CrossRefADSGoogle Scholar
  30. Masters, K., Springob, C., Huchra, J. 2008, AJ, 135, 1738.CrossRefADSGoogle Scholar
  31. Masters, K., Springob, C., Haynes, M., Giovanelli, R. 2006, ApJ, 653, 861.CrossRefADSGoogle Scholar
  32. Mathewson, D. S., Ford, V. L. 1996, ApJS, 107, 97 MF96.CrossRefADSGoogle Scholar
  33. Muzzin, A., Yee, H. K., Hall, P., Lin, H. 2007, ApJ, 663, 150.CrossRefADSGoogle Scholar
  34. Newman, J., Zepf, S., Davis, M., Freeman, W., Madore, B., Stetson, P., Silbermann, N., Phelps, R. 1999, ApJ, 523, 506.CrossRefADSGoogle Scholar
  35. Noordermeer, E., Verheijen, M. 2007, MNRAS, 381, 1463.CrossRefADSGoogle Scholar
  36. Paturel, G., Petit, C., Prugniel, P., Theureau, G., Rousseau, J., Brouty, M., Dubois, P., Cambresy, L. 2003, A&A, 412, 45.CrossRefADSGoogle Scholar
  37. Poggianti, B. M. 1997, A&AS, 122, 399.CrossRefADSGoogle Scholar
  38. Rakos, K., Schombert, J. 2005, PASP, 117, 245.CrossRefADSGoogle Scholar
  39. Raychaudhury, S., von Braun, K., Bernstein, G. M., Guhathakurta, P. 1997, AJ, 113, 2046.CrossRefADSGoogle Scholar
  40. Russell, D. G. 2004, ApJ, 607, 241.CrossRefADSGoogle Scholar
  41. Russell, D. G. 2005a, Ap&SS, 298, 577.CrossRefADSGoogle Scholar
  42. Russell, D. G. 2005b, Ap&SS, 299, 405.CrossRefADSGoogle Scholar
  43. Sakai, S. et al. 2000, ApJ, 529, 698.CrossRefADSGoogle Scholar
  44. Salaris, M., Weiss, A. 2002, A&A, 388, 492.CrossRefADSGoogle Scholar
  45. Sandage, A., Tammann, G., Saha, A., Reindl, B., Macchetto, F., Panagia, N. 2006, ApJ, 653, 843.CrossRefADSGoogle Scholar
  46. Spergel, D. N. et al. 2003, ApJS, 148, 175.CrossRefADSGoogle Scholar
  47. Spergel, D. N. et al. 2006, ApJS, 170, 377.CrossRefADSGoogle Scholar
  48. Springob, C., Masters, K., Haynes, M., Giovanelli, R., Marinoni, C. 2007, ApJS, 172, 599.CrossRefADSGoogle Scholar
  49. Strutskie, M. F. et al. 2006, AJ, 131, 1163.CrossRefADSGoogle Scholar
  50. Tonry, J. L., Dressler, A., Blakeslee, J. P., Ajhar, E. A., Fletcher, A. B., Luppino, G. A., Metzger, M. R., Moore, C. B. 2001, ApJ, 546, 641.CrossRefADSGoogle Scholar
  51. Tully, R. B., Pierce, M. J., Huang, J., Saunders, W., Verheijen, M., Witchalls, P. L. 1998, AJ, 115, 2264.CrossRefADSGoogle Scholar
  52. Tully, R. B., Pierce, M. J. 2000, ApJ, 533, 744.CrossRefADSGoogle Scholar
  53. van Leeuwen, F., Feast, M., Whitelock, P., Laney, C. 2007, MNRAS, 379, 723.CrossRefADSGoogle Scholar
  54. Willick, J. A. 1996, preprint — astro-ph/9610200.Google Scholar
  55. Wright, E. L. 2006, PASP, 118, 1711.CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  1. 1.Owego Free AcademyOwegoUSA

Personalised recommendations