Skip to main content

Advertisement

Log in

Pharmacological Modulation of TRPM2 Channels via PARP Pathway Leads to Neuroprotection in MPTP-induced Parkinson’s Disease in Sprague Dawley Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transient receptor potential melastatin-2 (TRPM2) channels are cation channels activated by oxidative stress and ADP-ribose (ADPR). Role of TRPM2 channels has been postulated in several neurological disorders, but, it has not been explored in animal models of Parkinson’s disease (PD). Thus, the role of TRPM2 and its associated poly (ADPR) polymerase (PARP) signaling pathways were investigated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model using TRPM2 inhibitor, 2-aminoethyl diphenyl borinate (2-APB), and PARP inhibitor, N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34). PD was induced by using a bilateral intranigral administration of MPTP in rats, and different parameters were evaluated. An increase in oxidative stress was observed, leading to locomotor and cognitive deficits in the PD rats. PD rats also showed an increased TRPM2 expression in the striatum and mid-brain accompanied by reduced expression of tyrosine hydroxylase (TH) in comparison to sham animals. Intraperitoneal administration of 2-APB and PJ-34 led to an improvement in the locomotor and cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and an increase in TH levels in the striatum and mid-brain. In addition, these pharmacological interventions also led to a decrease in the expression of TRPM2 in PD in the striatum and mid-brain. Our results provide a rationale for the development of potent pharmacological agents targeting the TRPM2-PARP pathway to provide therapeutic benefits for the treatment of neurological diseases like PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

taken from different gels and ACTIN, TH and TRPM2 exposures with their antibodies are different. Quantification for blots is shown in d TH in striatum, e TRPM2 in striatum, and f TRPM2 in mid-brain. Results were expressed as mean ± SEM. *p < 0.05 vs. sham animals; #p < 0.05, ##p < 0.01 vs. MPTP-induced PD animals (one-way ANOVA)

Fig. 7

Similar content being viewed by others

Data Availability

All data supporting the conclusions of this manuscript are provided in the text, figures and tables.

Abbreviations

TRPM2:

Transient receptor potential melastatin-2

ADPR:

Adenosine diphosphate ribose

PD:

Parkinson’s disease

PARP:

Poly (ADP-ribose) polymerase

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

2-APB:

2-Aminoethyl diphenyl borinate

PJ-34:

 N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride

TH:

Tyrosine hydroxylase

TRP:

Transient receptor potential

ROS:

Reactive oxygen species

NUDT9:

(Nucleoside diphosphate–linked moiety X)-type motif 9

PARG:

Poly (ADP-ribose) glycohydrolase

SNpc:

Substantia nigra pars compacta

AP:

Anteroposterior

ML:

Mediolateral

DV:

Dorsoventral

MDA:

Malondialdehyde

ANOVA:

One-way analysis of variance

References

  1. Li H (2017) TRP channel classification. Adv Exp Med Biol 976:1–8. https://doi.org/10.1007/978-94-024-1088-4_1

    Article  CAS  PubMed  Google Scholar 

  2. Thapak P, Vaidya B, Joshi HC, Singh JN, Sharma SS (2020) Therapeutic potential of pharmacological agents targeting TRP channels in CNS disorders. Pharmacol Res 159:105026. https://doi.org/10.1016/j.phrs.2020.105026

    Article  CAS  PubMed  Google Scholar 

  3. Naziroglu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36(3):355–366. https://doi.org/10.1007/s11064-010-0347-4

    Article  CAS  PubMed  Google Scholar 

  4. Ye M, Yang W, Ainscough JF, Hu XP, Li X, Sedo A, Zhang XH, Zhang X, Chen Z, Li XM, Beech DJ, Sivaprasadarao A, Luo JH, Jiang LH (2014) TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 5(11):e1541. https://doi.org/10.1038/cddis.2014.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang LH, Yang W, Zou J, Beech DJ (2010) TRPM2 channel properties, functions and therapeutic potentials. Expert Opin Ther Targets 14(9):973–988. https://doi.org/10.1517/14728222.2010.510135

    Article  CAS  PubMed  Google Scholar 

  6. Adhya P, Sharma SS (2019) Redox TRPs in diabetes and diabetic complications: mechanisms and pharmacological modulation. Pharmacol Res 146:104271. https://doi.org/10.1016/j.phrs.2019.104271

    Article  CAS  PubMed  Google Scholar 

  7. Song K, Wang H, Kamm GB, Pohle J, Reis FC, Heppenstall P, Wende H, Siemens J (2016) The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353(6306):1393–1398. https://doi.org/10.1126/science.aaf7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. An X, Fu Z, Mai C, Wang W, Wei L, Li D, Li C, Jiang LH (2019) Increasing the TRPM2 Channel Expression in human neuroblastoma SH-SY5Y cells augments the susceptibility to ROS-induced cell death. Cells 8 (1). https://doi.org/10.3390/cells8010028

  9. Xu C, Macciardi F, Li PP, Yoon IS, Cooke RG, Hughes B, Parikh SV, McIntyre RS, Kennedy JL, Warsh JJ (2006) Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B(1):36–43. https://doi.org/10.1002/ajmg.b.30239

    Article  CAS  PubMed  Google Scholar 

  10. Akyuva Y, Naziroglu M (2020) Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep 10(1):6449. https://doi.org/10.1038/s41598-020-63577-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thapak P, Bishnoi M, Sharma SS (2020) Pharmacological inhibition of transient receptor potential melastatin 2 (TRPM2) channels attenuates diabetes-induced cognitive deficits in rats: a mechanistic study. Curr Neurovasc Res 17(3):249–258. https://doi.org/10.2174/1567202617666200415142211

    Article  CAS  PubMed  Google Scholar 

  12. Dietz RM, Cruz-Torres I, Orfila JE, Patsos OP, Shimizu K, Chalmers N, Deng G, Tiemeier E, Quillinan N, Herson PS (2020) Reversal of global ischemia-induced cognitive dysfunction by delayed inhibition of TRPM2 ion channels. Transl Stroke Res 11(2):254–266. https://doi.org/10.1007/s12975-019-00712-z

    Article  PubMed  Google Scholar 

  13. Abuarab N, Munsey TS, Jiang LH, Li J, Sivaprasadarao A (2017) High glucose-induced ROS activates TRPM2 to trigger lysosomal membrane permeabilization and Zn(2+)-mediated mitochondrial fission. Sci Signal 10 (490). https://doi.org/10.1126/scisignal.aal4161

  14. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26(3):159–178. https://doi.org/10.1080/10799890600637506

    Article  CAS  PubMed  Google Scholar 

  15. Naziroglu M, Ozgul C, Celik O, Cig B, Sozbir E (2011) Aminoethoxydiphenyl borate and flufenamic acid inhibit Ca2+ influx through TRPM2 channels in rat dorsal root ganglion neurons activated by ADP-ribose and rotenone. J Membr Biol 241(2):69–75. https://doi.org/10.1007/s00232-011-9363-9

    Article  CAS  PubMed  Google Scholar 

  16. Vaidya B, Sharma SS (2020) Transient receptor potential channels as an emerging target for the treatment of parkinson’s disease: an insight into role of pharmacological interventions. J Frontiers in Cell Developmental Biology 8:1387. https://doi.org/10.3389/fcell.2020.584513

    Article  Google Scholar 

  17. Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218. https://doi.org/10.1186/gb-2011-12-3-218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25(12):633–639. https://doi.org/10.1016/j.tips.2004.10.004

    Article  CAS  PubMed  Google Scholar 

  19. Sun Y, Sukumaran P, Selvaraj S, Cilz NI, Schaar A, Lei S, Singh BB (2018) TRPM2 Promotes neurotoxin MPP(+)/MPTP-induced cell death. Mol Neurobiol 55(1):409–420. https://doi.org/10.1007/s12035-016-0338-9

    Article  CAS  PubMed  Google Scholar 

  20. Naziroglu M, Luckhoff A (2008) A calcium influx pathway regulated separately by oxidative stress and ADP-ribose in TRPM2 channels: single channel events. Neurochem Res 33(7):1256–1262. https://doi.org/10.1007/s11064-007-9577-5

    Article  CAS  PubMed  Google Scholar 

  21. Sumoza-Toledo A, Penner R (2011) TRPM2: a multifunctional ion channel for calcium signalling. J Physiol 589(Pt 7):1515–1525. https://doi.org/10.1113/jphysiol.2010.201855

    Article  CAS  PubMed  Google Scholar 

  22. Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT, Kazantsev AG (2007) Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP+-induced cytotoxicity in Parkinson’s disease in vitro models. Biochem Biophys Res Commun 357(3):596–602. https://doi.org/10.1016/j.bbrc.2007.03.163

    Article  CAS  PubMed  Google Scholar 

  23. Uppalapati D, Das NR, Gangwal RP, Damre MV, Sangamwar AT, Sharma SS (2014) Neuroprotective potential of peroxisome proliferator activated receptor-α agonist in cognitive impairment in Parkinson’s disease: Behavioral, biochemical, and PBPK profile. PPAR Res 2014. https://doi.org/10.1155/2014/753587

  24. Das NR, Gangwal RP, Damre MV, Sangamwar AT, Sharma SS (2014) A PPAR-beta/delta agonist is neuroprotective and decreases cognitive impairment in a rodent model of Parkinson’s disease. Curr Neurovasc Res 11(2):114–124. https://doi.org/10.2174/1567202611666140318114037

    Article  CAS  PubMed  Google Scholar 

  25. Kumar P, Kaundal RK, More S, Sharma SS (2009) Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson’s disease. Behav Brain Res 197(2):398–403. https://doi.org/10.1016/j.bbr.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  26. Santiago RM, Barbieiro J, Lima MM, Dombrowski PA, Andreatini R, Vital MA (2010) Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 34(6):1104–1114. https://doi.org/10.1016/j.pnpbp.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  27. Togashi K, Inada H, Tominaga M (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol 153(6):1324–1330. https://doi.org/10.1038/sj.bjp.0707675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iwashita A, Tojo N, Matsuura S, Yamazaki S, Kamijo K, Ishida J, Yamamoto H, Hattori K, Matsuoka N, Mutoh S (2004) A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone), attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia. J Pharmacol Exp Ther 310(2):425–436. https://doi.org/10.1124/jpet.104.066944

    Article  CAS  PubMed  Google Scholar 

  29. Thapak P, Khare P, Bishnoi M, Sharma SS (2020) Neuroprotective Effect of 2-Aminoethoxydiphenyl borate (2-APB) in amyloid beta-induced memory dysfunction: a mechanistic study. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-020-01012-z

  30. Monville C, Torres EM, Dunnett SB (2006) Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J Neurosci Methods 158(2):219–223. https://doi.org/10.1016/j.jneumeth.2006.06.001

    Article  PubMed  Google Scholar 

  31. Jangra A, Datusalia AK, Khandwe S, Sharma SS (2013) Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress-PARP pathway. Pharmacol Biochem Behav 114–115:43–51. https://doi.org/10.1016/j.pbb.2013.10.021

    Article  CAS  PubMed  Google Scholar 

  32. Khare P, Datusalia AK, Sharma SS (2017) Parthenolide, an NF-kappaB inhibitor ameliorates diabetes-induced behavioural deficit, neurotransmitter imbalance and neuroinflammation in type 2 diabetes rat model. Neuromolecular Med 19(1):101–112. https://doi.org/10.1007/s12017-016-8434-6

    Article  CAS  PubMed  Google Scholar 

  33. Kim BW, Koppula S, Kumar H, Park JY, Kim IW, More SV, Kim IS, Han SD, Kim SK, Yoon SH, Choi DK (2015) alpha-Asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTP-induced behavioral deficits in a mouse model of Parkinson’s disease. Neuropharmacology 97:46–57. https://doi.org/10.1016/j.neuropharm.2015.04.037

    Article  CAS  PubMed  Google Scholar 

  34. Kaundal RK, Sharma SS (2011) GW1929: A nonthiazolidinedione PPARγ agonist, ameliorates neurological damage in global cerebral ischemic-reperfusion injury through reduction in inflammation and DNA fragmentation. Behav Brain Res 216(2):606–612. https://doi.org/10.1016/j.bbr.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  35. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  36. Bulani Y, Sharma SS (2017) Argatroban attenuates diabetic cardiomyopathy in rats by reducing fibrosis, inflammation, apoptosis, and protease-activated receptor expression. Cardiovasc Drugs Ther 31(3):255–267. https://doi.org/10.1007/s10557-017-6732-3

    Article  CAS  PubMed  Google Scholar 

  37. Negi G, Sharma SS (2015) Inhibition of IkappaB kinase (IKK) protects against peripheral nerve dysfunction of experimental diabetes. Mol Neurobiol 51(2):591–598. https://doi.org/10.1007/s12035-014-8784-8

    Article  CAS  PubMed  Google Scholar 

  38. Resham K, Sharma SS (2019) Pharmacologic inhibition of porcupine, disheveled, and beta-catenin in Wnt signaling pathway ameliorates diabetic peripheral neuropathy in rats. J Pain 20(11):1338–1352. https://doi.org/10.1016/j.jpain.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  39. Chen T, Zhu J, Zhang C, Huo K, Fei Z, Jiang XF (2013) Protective effects of SKF-96365, a non-specific inhibitor of SOCE, against MPP+-induced cytotoxicity in PC12 cells: potential role of Homer1. PLoS ONE 8(1):e55601. https://doi.org/10.1371/journal.pone.0055601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thapak P, Bishnoi M, Sharma SS (2020) Amelioration of diabetes-induced cognitive impairment by transient receptor potential vanilloid 2 (TRPV2) channel inhibitor: behavioral and mechanistic study. Neurochem Int 139:104783. https://doi.org/10.1016/j.neuint.2020.104783

    Article  CAS  PubMed  Google Scholar 

  41. Chung KK, Freestone PS, Lipski J (2011) Expression and functional properties of TRPM2 channels in dopaminergic neurons of the substantia nigra of the rat. J Neurophysiol 106(6):2865–2875. https://doi.org/10.1152/jn.00994.2010

    Article  CAS  PubMed  Google Scholar 

  42. Cruz-Torres I, Backos DS, Herson PS (2020) Characterization and optimization of the novel transient receptor potential melastatin 2 antagonist tatM2NX. Mol Pharmacol 97(2):102–111. https://doi.org/10.1124/mol.119.117549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuhn F, Kuhn C, Luckhoff A (2017) Different principles of ADP-ribose-mediated activation and opposite roles of the NUDT9 homology domain in the TRPM2 orthologs of man and sea anemone. Front Physiol 8:879. https://doi.org/10.3389/fphys.2017.00879

    Article  PubMed  PubMed Central  Google Scholar 

  44. Braga R, Kouzmine I, Canteras NS, Da Cunha C (2005) Lesion of the substantia nigra, pars compacta impairs delayed alternation in a Y-maze in rats. Exp Neurol 192(1):134–141. https://doi.org/10.1016/j.expneurol.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  45. Kulkarni NP, Vaidya B, Narula A, Sharma SS (2021) Neuroprotective Potential of caffeic acid phenethyl ester (CAPE) in CNS disorders: mechanistic and therapeutic insights. Curr Neuropharmacol. https://doi.org/10.2174/1570159x19666210608165509

  46. Pallier PN, Drew CJ, Morton AJ (2009) The detection and measurement of locomotor deficits in a transgenic mouse model of Huntington’s disease are task- and protocol-dependent: influence of non-motor factors on locomotor function. Brain Res Bull 78(6):347–355. https://doi.org/10.1016/j.brainresbull.2008.10.007

    Article  PubMed  Google Scholar 

  47. O’Cearbhaill RE (2018) Using PARP inhibitors in advanced ovarian cancer. Oncology (Williston Park) 32(7):339–343

    Google Scholar 

  48. Pfeiffer RF (2016) Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 22:S119–S122. https://doi.org/10.1016/j.parkreldis.2015.09.004

    Article  PubMed  Google Scholar 

  49. Kim M, Cho KH, Shin MS, Lee JM, Cho HS, Kim CJ, Shin DH, Yang HJ (2014) Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int J Mol Med 33(4):870–878. https://doi.org/10.3892/ijmm.2014.1656

    Article  CAS  PubMed  Google Scholar 

  50. Inaba H, Tsukagoshi A, Kida S (2015) PARP-1 activity is required for the reconsolidation and extinction of contextual fear memory. Mol Brain 8(1):63. https://doi.org/10.1186/s13041-015-0153-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Katerji M, Filippova M, Duerksen-Hughes P (2019) Approaches and methods to measure oxidative stress in clinical samples: research applications in the cancer field. Oxid Med Cell Longev 2019:1279250. https://doi.org/10.1155/2019/1279250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang W, Chen YH, Liu H, Qu HD (2015) Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model. Int J Mol Med 36(5):1369–1376. https://doi.org/10.3892/ijmm.2015.2356

    Article  CAS  PubMed  Google Scholar 

  53. Yildizhan K, Naziroglu M (2020) Glutathione depletion and parkinsonian neurotoxin MPP(+)-induced TRPM2 channel activation play central roles in oxidative cytotoxicity and inflammation in microglia. Mol Neurobiol 57(8):3508–3525. https://doi.org/10.1007/s12035-020-01974-7

    Article  CAS  PubMed  Google Scholar 

  54. Johnson ME, Salvatore MF, Maiolo SA, Bobrovskaya L (2018) Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson’s progression: evidence from clinical studies and neurotoxin models. Prog Neurobiol 165–167:1–25. https://doi.org/10.1016/j.pneurobio.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  55. Nagatsu T, Nakashima A, Ichinose H, Kobayashi K (2019) Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. J Neural Transm (Vienna) 126(4):397–409. https://doi.org/10.1007/s00702-018-1903-3

    Article  CAS  Google Scholar 

  56. Ratnam M, Chan J, Lesani N, Sidorova-Darmos E, Eubanks JH, Aarts MM (2018) mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. Int J Dev Neurosci 69:23–31. https://doi.org/10.1016/j.ijdevneu.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  57. Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S (2005) Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95(3):715–723. https://doi.org/10.1111/j.1471-4159.2005.03396.x

    Article  CAS  PubMed  Google Scholar 

  58. Colton CK, Zhu MX (2007) 2-Aminoethoxydiphenyl borate as a common activator of TRPV1, TRPV2, and TRPV3 channels. Handb Exp Pharmacol 179:173–187. https://doi.org/10.1007/978-3-540-34891-7_10

    Article  CAS  Google Scholar 

  59. Negi G, Kumar A, Sharma SS (2010) Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy. Biochem Biophys Res Commun 391(1):102–106. https://doi.org/10.1016/j.bbrc.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  60. Djillani A, Nüße O (1843) Dellis O (2014) Characterization of novel store-operated calcium entry effectors. Biochim Biophys Acta 10:2341–2347. https://doi.org/10.1016/j.bbamcr.2014.03.012

    Article  CAS  Google Scholar 

  61. Barbiero JK, Santiago R, Tonin FS, Boschen S, da Silva LM, Werner MF, da Cunha C, Lima MM, Vital MA (2014) PPAR-α agonist fenofibrate protects against the damaging effects of MPTP in a rat model of Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 53:35–44. https://doi.org/10.1016/j.pnpbp.2014.02.009

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was supported by financial support from start-up grant (R-12020/2017-HR) Department of Health Research, Ministry of Health and Family Welfare, Government of India. Also, authors received financial support from the National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

BV: data curation; formal analysis; investigation; methodology; validation; visualization; writing—original draft; writing—review and editing. HK: investigation; data curation; formal analysis; methodology; visualization. PT: western bloting investigation and analysis; visualization. SSS: conceptualization; resources; supervision; writing—final review and editing. JNS: conceptualization; data curation; funding acquisition; project administration; resources; supervision; validation; visualization; roles/writing—original draft; review and editing.

Corresponding author

Correspondence to Jitendra Narain Singh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research involving Human Participants and/or Animals

Experiments were carried out in accordance with the Committee for the Purpose of Control and Supervision on Experiments on Animals, Government of India; and after approval of Institutional Animal Ethics Committee of National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India (IAEC/18/19 and IAEC/ 17/25).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors have contributed equally to this work and share first authorship

Supplementary Information

Below is the link to the electronic supplementary material.

12035_2021_2711_MOESM1_ESM.jpg

Supplementary file1 Supplementary Fig 1: Fura-2AM assay for the measurement of intracellular calcium influx to study the effect of 2-APB on calcium influx on SH-SY5Y cells. (JPG 2433 KB)

12035_2021_2711_MOESM2_ESM.jpg

Supplementary file2 Supplementary Fig 2: GSH estimation carried out in the (A) Mid-Brain (B) Hippocampus (C) Striatum (D) Cortex. (JPG 3172 KB)

Supplementary file3 (TIF 7728 KB)

Supplementary file4 (JPG 4262 KB)

Supplementary file5 (JPG 4140 KB)

Supplementary file6 (TIF 9482 KB)

Supplementary file7 (TIF 7988 KB)

Supplementary file8 (TIF 9482 KB)

Supplementary file9 (JPG 1109 KB)

Supplementary file10 (JPG 3570 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, B., Kaur, H., Thapak, P. et al. Pharmacological Modulation of TRPM2 Channels via PARP Pathway Leads to Neuroprotection in MPTP-induced Parkinson’s Disease in Sprague Dawley Rats. Mol Neurobiol 59, 1528–1542 (2022). https://doi.org/10.1007/s12035-021-02711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02711-4

Keywords

Navigation