Skip to main content

Advertisement

Log in

The Endocannabinoid System Is Present in Rod Outer Segments from Retina and Is Modulated by Light

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The aim of the present research was to evaluate if the endocannabinoid system (enzymes and receptors) could be modulated by light in rod outer segment (ROS) from bovine retina. First, we analyzed endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in purified ROS obtained from dark-adapted (DROS) or light-adapted (LROS) retinas. To this end, diacylglycerol lipase (DAGL), monoacylglycerol lipase (MAGL), and lysophosphatidate phosphohydrolase (LPAP) enzymatic activities were analyzed using radioactive substrates. The protein content of these enzymes and of the receptors to which cannabinoids bind was determined by immunoblotting under light stimulus. Our results indicate that whereas DAGL and MAGL activities were stimulated in retinas exposed to light, no changes were observed in LPAP activity. Interestingly, the protein content of the main enzymes involved in 2-AG metabolism, phospholipase C β1 (PLCβ1), and DAGLα (synthesis), and MAGL (hydrolysis), was also modified by light. PLCβ1 content was increased, while that of lipases was decreased. On the other hand, light produced an increase in the cannabinoid receptors CB1 and CB2 and a decrease in GPR55 protein levels. Taken together, our results indicate that the endocannabinoid system (enzymes and receptors) depends on the illumination state of the retina, suggesting that proteins related to phototransduction phenomena could be involved in the effects observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABHD6:

Serine hydrolase a/b-hydrolase domain-containing 6

2-AG:

2-Arachidonoylglycerol

AEA:

Anandamide

BROS:

Rod outer segments obtained in darkness and subsequently illuminated

BSA:

Bovine serum albumin; CB1, cannabinoid receptor 1

CB2:

Cannabinoid receptor 2

CNS:

Central nervous system

DAG:

Diacylglycerol

DAGL:

Diacylglycerol lipase

DTT:

Dithiothreitol

DROS:

Rod outer segments obtained from dark-adapted retinas

ECS:

Endocannabinoid system

FAAH:

Fatty acid amide hydrolase

GPR55:

G protein–coupled receptor 55

HEPES:

N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid]

LPA:

Lysophosphatidic acid

LPAP:

Lysophosphatidate phosphohydrolase

LROS:

Rod outer segments obtained from bleached retinas

MAG:

Monoacylglycerol

MAGL:

Monoacylglycerol lipase

NAPE-PLD:

N-arachidonoyl-phosphatidylethanolamine phospholipase D

NEM:

N-Ethylmaleimide

RIS:

Rod inner segments

ROS:

Rod outer segments

TLC:

Thin-layer chromatography

TRPV1:

Transient receptor potential cation channel

References

  1. Laties AM, Bok D, Liebman P (1976) Procion yellow: a marker dye for outer segment disc patency and for rod renewal. Exp Eye Res 23:139–148

    CAS  PubMed  Google Scholar 

  2. Arshavsky VY, Burns ME (2012) Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 287:1620–1626

    CAS  PubMed  Google Scholar 

  3. Giusto NM, Pasquare SJ, Salvador GA, Ilincheta de Boschero MG (2010) Lipid second messengers and related enzymes in vertebrate rod outer segments. J Lipid Res 51:685–700

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    CAS  PubMed  Google Scholar 

  5. Sugiura T, Kishimoto S, Oka S, Gokoh M (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45:405–446

    CAS  PubMed  Google Scholar 

  6. Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68-69:619–631

    CAS  PubMed  Google Scholar 

  7. Okamoto Y, Wang J, Morishita J, Ueda N (2007) Biosynthetic pathways of the endocannabinoid anandamide. Chem Biodivers 4:1842–1857

    CAS  PubMed  Google Scholar 

  8. Maurelli S, Bisogno T, De PL, Di LA, Marino G, Di M, V (1995) Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma ‘anandamide amidohydrolase’. FEBS Lett 377:82–86

    CAS  PubMed  Google Scholar 

  9. Prescott SM, Majerus PW (1983) Characterization of 1,2-diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl-monoacylglycerol intermediate. J Biol Chem 258:764–769

    CAS  PubMed  Google Scholar 

  10. Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778

    CAS  PubMed  Google Scholar 

  11. Nakane S, Oka S, Arai S, Waku K, Ishima Y, Tokumura A, Sugiura T (2002) 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch Biochem Biophys 402:51–58

    CAS  PubMed  Google Scholar 

  12. Dinh TP, Kathuria S, Piomelli D (2004) RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol Pharmacol 66:1260–1264

    CAS  PubMed  Google Scholar 

  13. Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D, Boscia F, Freund TF (2004) Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 20:441–458

    CAS  PubMed  Google Scholar 

  14. Savinainen JR, Saario SM, Laitinen JT (2012) The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol (Oxford) 204:267–276

    CAS  Google Scholar 

  15. Hu SS, Arnold A, Hutchens JM, Radicke J, Cravatt BF, Wager-Miller J, Mackie K, Straiker A (2010) Architecture of cannabinoid signaling in mouse retina. J Comp Neurol 518:3848–3866

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yazulla S (2008) Endocannabinoids in the retina: from marijuana to neuroprotection. Prog Retin Eye Res 27:501–526

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez EM, Tagliaferro P, Onaivi ES, Lopez-Costa JJ (2011) Distribution of CB2 cannabinoid receptor in adult rat retina. Synapse 65:388–392

    CAS  PubMed  Google Scholar 

  18. Bouskila J, Javadi P, Casanova C, Ptito M, Bouchard JF (2013) Rod photoreceptors express GPR55 in the adult vervet monkey retina. PLoS One 8:e81080

    PubMed  PubMed Central  Google Scholar 

  19. Henstridge CM (2012) Off-target cannabinoid effects mediated by GPR55. Pharmacology 89:179–187

    CAS  PubMed  Google Scholar 

  20. Straiker A, Sullivan JM (2003) Cannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander. J Neurophysiol 89:2647–2654

    CAS  PubMed  Google Scholar 

  21. Fan SF, Yazulla S (2005) Reciprocal inhibition of voltage-gated potassium currents (I K(V)) by activation of cannabinoid CB1 and dopamine D1 receptors in ON bipolar cells of goldfish retina. Vis Neurosci 22:55–63

    PubMed  Google Scholar 

  22. Lalonde MR, Chauhan BC, Tremblay F (2006) Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anaesthesia and intravitreal tetrodotoxin. J Physiol 570:325–338

    CAS  PubMed  Google Scholar 

  23. Cecyre B, Zabouri N, Huppe-Gourgues F, Bouchard JF, Casanova C (2013) Roles of cannabinoid receptors type 1 and 2 on the retinal function of adult mice. Invest Ophthalmol Vis Sci 54:8079–8090

    CAS  PubMed  Google Scholar 

  24. Dawson WW, Jimenez-Antillon CF, Perez JM, Zeskind JA (1977) Marijuana and vision--after ten years’ use in Costa Rica. Invest Ophthalmol Vis Sci 16:689–699

    CAS  PubMed  Google Scholar 

  25. Kiplinger GF, Manno JE, Rodda BE, Forney RB (1971) Dose-response analysis of the effects of tetrahydrocannabinol in man. Clin Pharmacol Ther 12:650–657

    CAS  PubMed  Google Scholar 

  26. Pascual AC, Martin-Moreno AM, Giusto NM, de Ceballos ML, Pasquare SJ (2014) Normal aging in rats and pathological aging in human Alzheimer’s disease decrease FAAH activity: modulation by cannabinoid agonists. Exp Gerontol 60:92–99

    CAS  PubMed  Google Scholar 

  27. Pascual AC, Gaveglio VL, Giusto NM, Pasquare SJ (2014) Cannabinoid receptor-dependent metabolism of 2-arachidonoylglycerol during aging. Exp Gerontol 55:134–142

    CAS  PubMed  Google Scholar 

  28. Scotter EL, Abood ME, Glass M (2010) The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol 160:480–498

    CAS  PubMed  PubMed Central  Google Scholar 

  29. El-Remessy AB, Khalil IE, Matragoon S, Abou-Mohamed G, Tsai NJ, Roon P, Caldwell RB, Caldwell RW et al (2003) Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol 163:1997–2008

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Slusar JE, Cairns EA, Szczesniak AM, Bradshaw HB, Di PA, Kelly ME (2013) The fatty acid amide hydrolase inhibitor, URB597, promotes retinal ganglion cell neuroprotection in a rat model of optic nerve axotomy. Neuropharmacology 72:116–125

    CAS  PubMed  Google Scholar 

  31. Pinar-Sueiro S, Zorrilla Hurtado JA, Veiga-Crespo P, Sharma SC, Vecino E (2013) Neuroprotective effects of topical CB1 agonist WIN 55212-2 on retinal ganglion cells after acute rise in intraocular pressure induced ischemia in rat. Exp Eye Res 110:55–58

    CAS  PubMed  Google Scholar 

  32. Lax P, Esquiva G, Altavilla C, Cuenca N (2014) Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration. Exp Eye Res 120:175–185

    CAS  PubMed  Google Scholar 

  33. AMES A, III HASTINGSAB (1956) Studies on water and electrolytes in nervous tissue. I. Rabbit retina: methods and interpretation of data. J Neurophysiol 19:201–212

    CAS  PubMed  Google Scholar 

  34. Kuhn H (1982) Light-regulated binding of proteins to photoreceptor membranes and its use for the purification of several rod cell proteins. Methods Enzymol 81:556–564

    CAS  PubMed  Google Scholar 

  35. Roque ME, Giusto NM (1995) Phosphatidylethanolamine N-methyltransferase activity in isolated rod outer segments from bovine retina. Exp Eye Res 60:631–643

    CAS  PubMed  Google Scholar 

  36. Salvador GA, Giusto NM (2006) Phospholipase D from photoreceptor rod outer segments is a downstream effector of RhoA: evidence of a light-dependent mechanism. Exp Eye Res 83:202–211

    CAS  PubMed  Google Scholar 

  37. Elias RV, Sezate SS, Cao W, McGinnis JF (2004) Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells. Mol Vis 10:672–681

    CAS  PubMed  Google Scholar 

  38. Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, Govardovskii VI, Pugh EN Jr, Arshavsky VY (2002) Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron 34:95–106

    CAS  PubMed  Google Scholar 

  39. Sokolov M, Strissel KJ, Leskov IB, Michaud NA, Govardovskii VI, Arshavsky VY (2004) Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse. J Biol Chem 279:19149–19156

    CAS  PubMed  Google Scholar 

  40. Pasquare de Garcia SJ, Giusto NM (1986) Phosphatidate phosphatase activity in isolated rod outer segment from bovine retina. Biochim Biophys Acta 875:195–202

    CAS  PubMed  Google Scholar 

  41. Gaveglio VL, Pasquare SJ, Giusto NM (2011) Metabolic pathways for the degradation of phosphatidic acid in isolated nuclei from cerebellar cells. Arch Biochem Biophys 507:271–280

    CAS  PubMed  Google Scholar 

  42. Pascual AC, Gaveglio VL, Giusto NM, Pasquare SJ (2013) Aging modifies the enzymatic activities involved in 2-arachidonoylglycerol metabolism. Biofactors 39:209–220

    CAS  PubMed  Google Scholar 

  43. Rosenberger TA, Farooqui AA, Horrocks LA (2007) Bovine brain diacylglycerol lipase: substrate specificity and activation by cyclic AMP-dependent protein kinase. Lipids 42:187–195

    CAS  PubMed  Google Scholar 

  44. Folch J, Lees M, Slone Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  45. Fleming IN, Yeaman SJ (1995) Subcellular distribution of N-ethylmaleimide-sensitive and -insensitive phosphatidic acid phosphohydrolase in rat brain. Biochim Biophys Acta 1254:161–168

    PubMed  Google Scholar 

  46. Baker RR, Chang H (2000) A metabolic path for the degradation of lysophosphatidic acid, an inhibitor of lysophosphatidylcholine lysophospholipase, in neuronal nuclei of cerebral cortex. Biochim Biophys Acta 1483:58–68

    CAS  PubMed  Google Scholar 

  47. Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Giusto NM, Bazan NG (1979) Phospholipids and acylglycerols biosynthesis and 14CO2 production from [14C]glycerol in the bovine retina: the effects of incubation time, oxygen and glucose. Exp Eye Res 29:155–168

    CAS  PubMed  Google Scholar 

  49. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  50. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  51. Fain GL, Matthews HR, Cornwall MC, Koutalos Y (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81:117–151

    CAS  PubMed  Google Scholar 

  52. Bouskila J, Javadi P, Elkrief L, Casanova C, Bouchard JF, Ptito M (2016) A comparative analysis of the endocannabinoid system in the retina of mice, tree shrews, and monkeys. Neural Plast 2016:3127658

    PubMed  PubMed Central  Google Scholar 

  53. Straiker AJ, Maguire G, Mackie K, Lindsey J (1999) Localization of cannabinoid CB1 receptors in the human anterior eye and retina. Invest Ophthalmol Vis Sci 40:2442–2448

    CAS  PubMed  Google Scholar 

  54. Hillard CJ (2008) Role of cannabinoids and endocannabinoids in cerebral ischemia. Curr Pharm Des 14:2347–2361

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Naccarato M, Pizzuti D, Petrosino S, Simonetto M, Ferigo L, Grandi FC, Pizzolato G, Di M, V (2010) Possible anandamide and palmitoylethanolamide involvement in human stroke. Lipids Health Dis 9:47

    PubMed  PubMed Central  Google Scholar 

  56. Ternianov A, Perez-Ortiz JM, Solesio ME, Garcia-Gutierrez MS, Ortega-Alvaro A, Navarrete F, Leiva C, Galindo MF et al (2012) Overexpression of CB2 cannabinoid receptors results in neuroprotection against behavioral and neurochemical alterations induced by intracaudate administration of 6-hydroxydopamine. Neurobiol Aging 33:421–416

    PubMed  Google Scholar 

  57. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P, Williams EJ, Gangadharan U, Hobbs C, Di M, V, Doherty P (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pasquare SJ, Giusto NM (1993) Differential properties of phosphatidate phosphohydrolase and diacylglyceride lipase activities in retinal subcellular fractions and rod outer segments. Comp Biochem Physiol B 104:141–148

    CAS  PubMed  Google Scholar 

  59. Pasquare SJ, Salvador GA, Giusto NM (2008) Involvement of lysophosphatidic acid, sphingosine 1-phosphate and ceramide 1-phosphate in the metabolization of phosphatidic acid by lipid phosphate phosphatases in bovine rod outer segments. Neurochem Res 33:1205–1215

    CAS  PubMed  Google Scholar 

  60. Pasquare SJ, Giusto NM (2008) Diacylglyceride lipase activity in rod outer segments depends on the illumination state of the retina. Neurochem Int 53:382–388

    CAS  PubMed  Google Scholar 

  61. Pagano RE, Longmuir KJ (1985) Phosphorylation, transbilayer movement, and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatidic acid by cultured fibroblasts. J Biol Chem 260:1909–1916

    CAS  PubMed  Google Scholar 

  62. Li J, Dong Y, Lu X, Wang L, Peng W, Zhang XC, Rao Z (2013) Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6. Protein Cell 4:548–561

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nevalainen T, Irving AJ (2010) GPR55, a lysophosphatidylinositol receptor with cannabinoid sensitivity? Curr Top Med Chem 10:799–813

    CAS  PubMed  Google Scholar 

  64. Labar G, Bauvois C, Borel F, Ferrer JL, Wouters J, Lambert DM (2010) Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. Chembiochem 11:218–227

    CAS  PubMed  Google Scholar 

  65. Ghalayini AJ, Anderson RE (1992) Activation of bovine rod outer segment phospholipase C by arrestin. J Biol Chem 267:17977–17982

    CAS  PubMed  Google Scholar 

  66. Kerov V, Chen D, Moussaif M, Chen YJ, Chen CK, Artemyev NO (2005) Transducin activation state controls its light-dependent translocation in rod photoreceptors. J Biol Chem 280:41069–41076

    CAS  PubMed  Google Scholar 

  67. Strissel KJ, Lishko PV, Trieu LH, Kennedy MJ, Hurley JB, Arshavsky VY (2005) Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem 280:29250–29255

    CAS  PubMed  Google Scholar 

  68. Deretic D, Williams AH, Ransom N, Morel V, Hargrave PA, Arendt A (2005) Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4). Proc Natl Acad Sci U S A 102:3301–3306

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Deretic D (2006) A role for rhodopsin in a signal transduction cascade that regulates membrane trafficking and photoreceptor polarity. Vis Res 46:4427–4433

    CAS  PubMed  Google Scholar 

  70. Insinna C, Besharse JC (2008) Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn 237:1982–1992

    PubMed  PubMed Central  Google Scholar 

  71. Huttl S, Michalakis S, Seeliger M, Luo DG, Acar N, Geiger H, Hudl K, Mader R et al (2005) Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1. J Neurosci 25:130–138

    PubMed  PubMed Central  Google Scholar 

  72. Tam BM, Moritz OL, Papermaster DS (2004) The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures. Mol Biol Cell 15:2027–2037

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pearring JN, Salinas RY, Baker SA, Arshavsky VY (2013) Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 36:24–51

    CAS  PubMed  Google Scholar 

  74. Bouskila J, Harrar V, Javadi P, Beierschmitt A, Palmour R, Casanova C, Bouchard JF, Ptito M (2016) Cannabinoid receptors CB1 and CB2 modulate the electroretinographic waves in vervet monkeys. Neural Plast 2016:1253245

    PubMed  PubMed Central  Google Scholar 

  75. Chen Y, Luo X, Liu S, Shen Y (2018) Neuroprotective effect of cannabinoid receptor 1 antagonist in the MNU-induced retinal degeneration model. Exp Eye Res 167:145–151

    CAS  PubMed  Google Scholar 

  76. Imamura T, Tsuruma K, Inoue Y, Otsuka T, Ohno Y, Ogami S, Yamane S, Shimazawa M et al (2018) Involvement of cannabinoid receptor type 2 in light-induced degeneration of cells from mouse retinal cell line in vitro and mouse photoreceptors in vivo. Exp Eye Res 167:44–50

    CAS  PubMed  Google Scholar 

  77. Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362:928–934

    CAS  PubMed  Google Scholar 

  78. Alhouayek M, Masquelier J, Muccioli GG (2018) Lysophosphatidylinositols, from cell membrane constituents to GPR55 ligands. Trends Pharmacol Sci 39:586–604

    CAS  PubMed  Google Scholar 

  79. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di M, V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    CAS  PubMed  Google Scholar 

  80. Bouskila J, Harrar V, Javadi P, Casanova C, Hirabayashi Y, Matsuo I, Ohyama J, Bouchard JF et al (2016) Scotopic vision in the monkey is modulated by the G protein-coupled receptor 55. Vis Neurosci 33:E006

    PubMed  Google Scholar 

Download references

Funding

This work was supported by funds granted by the Agencia Nacional de Promoción Científica y Tecnológica 2014-1089 and the Secretaría General de Ciencia y Tecnología, Universidad Nacional del Sur 24/B176, Argentina, to Dr. SJ Pasquaré.

Author information

Authors and Affiliations

Authors

Contributions

SJP and VLG conceived and designed the experiments and analyzed the data. ECHA and VLG performed the experiments. SJP wrote the paper. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Susana J. Pasquaré.

Ethics declarations

Consent for Publication

All authors have read the manuscript and agreed to its content. The article is original, has not already been published in a journal, and is not currently under consideration by another journal.

Competing Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, E.C., Gaveglio, V.L. & Pasquaré, S.J. The Endocannabinoid System Is Present in Rod Outer Segments from Retina and Is Modulated by Light. Mol Neurobiol 56, 7284–7295 (2019). https://doi.org/10.1007/s12035-019-1603-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1603-5

Keywords

Navigation