Advertisement

Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies

  • Eliana Baez-Jurado
  • Oscar Hidalgo-Lanussa
  • Biviana Barrera-Bailón
  • Amirhossein Sahebkar
  • Ghulam Md Ashraf
  • Valentina Echeverria
  • George E. BarretoEmail author
Article

Abstract

Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules—besides microRNAs, hormones, and neurotrophins—with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.

Keywords

Mesenchymal stem cells Paracrine factors Pathologies Therapeutics Secretome Brain 

Abbreviations

ASCs

Adult stem cells

AFSCs

Amniotic fluid stem cells

CNS

Central nervous system

CM-A-MSC

Conditioned medium of mesenchymal cells derived from adipose tissue

BM-MSC

Conditioned medium of mesenchymal stem cells derived from bone marrow

CM-MSCs

Conditioned medium of mesenchymal stem cells

DPSCs

Dental plug stem cells

ESCs

Embryonic stem cells

EpSCs

Epithelial stem cells

FSC

Fetal stem cells

HSC

Hematopoietic stem cells

HSC

Hepatic stem cells

HI

Hypoxic-ischemic

IPSC

Induced pluripotent stem cells

A-MSC

Mesenchymal cells derived from adipose tissue

MSCs

Mesenchymal stem cells

BM-MSC

Mesenchymal stem cells derived from bone marrow

hUCB-MSC

Mesenchymal stem cells of the human umbilical cord

L-MSC

Mesenchymal stromal cells derived from the limbus

NSC

Neural stem cells

PSC

Pluripotent stem cells

ROS

Oxygen species

RNS

Reactive nitrogen species

SCI

Spinal cord injury

TBI

Traumatic brain injury

UCB

Umbilical cord blood

UCPVC

Umbilical cord stem cells

UCPVC

Umbilical cord stem cells

WJSC

Wharton gelatin stem cells

Notes

Acknowledgments

This work was in part funded by PUJ grant (ID no. 7115) to GEB. We also acknowledge scholarships for doctoral studies granted by the Vicerrectoría Académica of PUJ to Baez-Jurado E and Hidalgo-Lanussa O.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest.

References

  1. 1.
    Mahmoudifar N, Doran PM (2015) Mesenchymal stem cells derived from human adipose tissue. Methods Mol Biol 1340:53–64.  https://doi.org/10.1007/978-1-4939-2938-2_4 CrossRefPubMedGoogle Scholar
  2. 2.
    Gardner OF, Alini M, Stoddart MJ (2015) Mesenchymal stem cells derived from human bone marrow. Methods Mol Biol 1340:41–52.  https://doi.org/10.1007/978-1-4939-2938-2_3 CrossRefPubMedGoogle Scholar
  3. 3.
    Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A (2018) Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem Cells Int 2018:9415367.  https://doi.org/10.1155/2018/9415367 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chagastelles PC, Nardi NB, Camassola M (2010) Biology and applications of mesenchymal stem cells. Sci Prog 93(Pt 2):113–127CrossRefGoogle Scholar
  5. 5.
    Zheng G, Huang L, Tong H, Shu Q, Hu Y, Ge M, Deng K, Zhang L et al (2014) Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res 15:39.  https://doi.org/10.1186/1465-9921-15-39 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    DiNunzio JC, Williams RO 3rd (2008) CNS disorders—current treatment options and the prospects for advanced therapies. Drug Dev Ind Pharm 34(11):1141–1167.  https://doi.org/10.1080/03639040802020536 CrossRefPubMedGoogle Scholar
  7. 7.
    Shoichet MS, Tate CC, Baumann MD, LaPlaca MC (2008) Strategies for regeneration and repair in the injured central nervous system. In: Reichert WM (ed) Indwelling neural implants: strategies for contending with the in vivo environment. Frontiers in neuroengineering. Boca Raton (FL),  CRC Press/Taylor & Francis.Google Scholar
  8. 8.
    Zhu Y, Chen X, Yang X, Ei-Hashash A (2018) Stem cells in lung repair and regeneration: current applications and future promise. J Cell Physiol 233(10):6414–6424.  https://doi.org/10.1002/jcp.26414 CrossRefPubMedGoogle Scholar
  9. 9.
    Galindo LT, Filippo TR, Semedo P, Ariza CB, Moreira CM, Camara NO, Porcionatto MA (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011:564089.  https://doi.org/10.1155/2011/564089 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shologu N, Scully M, Laffey JG, O'Toole D (2018) Human mesenchymal stem cell secretome from bone marrow or adipose-derived tissue sources for treatment of hypoxia-induced pulmonary epithelial injury. Int J Mol Sci 19(10). pii: E2996 https://doi.org/10.3390/ijms19102996
  11. 11.
    Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A (2018) Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles 7(1):1522236.  https://doi.org/10.1080/20013078.2018.1522236 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Venugopal C, Shobha K, Rai KS, Pinnelli VB, Kutty BM, Dhanushkodi A (2018) Neuroprotection by human dental pulp mesenchymal stem cells: from billions to nano. Curr Gene Ther 18:307–323.  https://doi.org/10.2174/1566523218666180913152615 CrossRefPubMedGoogle Scholar
  13. 13.
    Chen YX, Zeng ZC, Sun J, Zeng HY, Huang Y, Zhang ZY (2015) Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J Radiat Res 56(4):700–708.  https://doi.org/10.1093/jrr/rrv026 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zagoura DS, Roubelakis MG, Bitsika V, Trohatou O, Pappa KI, Kapelouzou A, Antsaklis A, Anagnou NP (2012) Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 61(6):894–906.  https://doi.org/10.1136/gutjnl-2011-300908 CrossRefPubMedGoogle Scholar
  15. 15.
    Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18 (9). pii: E1852  https://doi.org/10.3390/ijms18091852
  16. 16.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98CrossRefGoogle Scholar
  17. 17.
    Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM et al (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212(3):702–709.  https://doi.org/10.1002/jcp.21068 CrossRefPubMedGoogle Scholar
  18. 18.
    Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One 9(9):e107001.  https://doi.org/10.1371/journal.pone.0107001 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kupcova Skalnikova H (2013) Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 95(12):2196–2211.  https://doi.org/10.1016/j.biochi.2013.07.015 CrossRefPubMedGoogle Scholar
  20. 20.
    Hao P, Liang Z, Piao H, Ji X, Wang Y, Liu Y, Liu R, Liu J (2014) Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metab Brain Dis 29(1):193–205.  https://doi.org/10.1007/s11011-014-9490-y CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wei X, Du Z, Zhao L, Feng D, Wei G, He Y, Tan J, Lee WH et al (2009) IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells 27(2):478–488.  https://doi.org/10.1634/stemcells.2008-0333 CrossRefPubMedGoogle Scholar
  22. 22.
    Cirillo G, Bianco MR, Colangelo AM, Cavaliere C, Daniele de L, Zaccaro L, Alberghina L, Papa M (2011) Reactive astrocytosis-induced perturbation of synaptic homeostasis is restored by nerve growth factor. Neurobiol Dis 41(3):630–639.  https://doi.org/10.1016/j.nbd.2010.11.012 CrossRefPubMedGoogle Scholar
  23. 23.
    Deng LX, Hu J, Liu N, Wang X, Smith GM, Wen X, Xu XM (2011) GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury. Exp Neurol 229(2):238–250.  https://doi.org/10.1016/j.expneurol.2011.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bongso A, Eng HL, Brenner S, Yeo P (2005) Stem cells From bench to bedside. Stem Cells. Pages 588.  https://doi.org/10.1142/5729
  25. 25.
    Liras A (2010) Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J Transl Med 8:131.  https://doi.org/10.1186/1479-5876-8-131 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. Biochim Biophys Acta 1834(11):2380–2384.  https://doi.org/10.1016/j.bbapap.2013.01.032 CrossRefPubMedGoogle Scholar
  27. 27.
    Spees JL, Lee RH, Gregory CA (2016) Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 7(1):125.  https://doi.org/10.1186/s13287-016-0363-7 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee TH, Yoon JG (2008) Intracerebral transplantation of human adipose tissue stromal cells after middle cerebral artery occlusion in rats. J Clin Neurosci 15(8):907–912.  https://doi.org/10.1016/j.jocn.2007.03.016 CrossRefPubMedGoogle Scholar
  29. 29.
    De Miguel MP, Arnalich Montiel F, Lopez Iglesias P, Blazquez Martinez A, Nistal M (2009) Epiblast-derived stem cells in embryonic and adult tissues. Int J Dev Biol 53(8–10):1529–1540.  https://doi.org/10.1387/ijdb.072413md CrossRefPubMedGoogle Scholar
  30. 30.
    Savatier P, Osteil P, Tam PP (2017) Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: slippery slope, terrace and cliff. Stem Cell Res 19:104–112.  https://doi.org/10.1016/j.scr.2017.01.008 CrossRefPubMedGoogle Scholar
  31. 31.
    Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5(5):362–369.  https://doi.org/10.1080/14653240310003026 CrossRefPubMedGoogle Scholar
  32. 32.
    Paul G, Anisimov SV (2013) The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie 95(12):2246–2256.  https://doi.org/10.1016/j.biochi.2013.07.013 CrossRefPubMedGoogle Scholar
  33. 33.
    Mitsiadis TA, Barrandon O, Rochat A, Barrandon Y, De Bari C (2007) Stem cell niches in mammals. Exp Cell Res 313(16):3377–3385.  https://doi.org/10.1016/j.yexcr.2007.07.027 CrossRefPubMedGoogle Scholar
  34. 34.
    Maumus M, Jorgensen C, Noel D (2013) Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie 95(12):2229–2234.  https://doi.org/10.1016/j.biochi.2013.04.017 CrossRefPubMedGoogle Scholar
  35. 35.
    Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631.  https://doi.org/10.1146/annurev.cellbio.21.012704.131525 CrossRefPubMedGoogle Scholar
  36. 36.
    Caplan AI, Hariri R (2015) Body management: mesenchymal stem cells control the internal regenerator. Stem Cells Transl Med 4(7):695–701.  https://doi.org/10.5966/sctm.2014-0291 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Marinkovic M, Block TJ, Rakian R, Li Q, Wang E, Reilly MA, Dean DD, Chen XD (2016) One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior. Matrix Biol 52-54:426–441.  https://doi.org/10.1016/j.matbio.2016.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4):625–634.  https://doi.org/10.1634/stemcells.22-4-625 CrossRefPubMedGoogle Scholar
  39. 39.
    Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316.  https://doi.org/10.1200/JCO.2000.18.2.307 CrossRefPubMedGoogle Scholar
  40. 40.
    Deus GC, Normanton M, Hamerschlak N, Kondo AT, Ribeiro AA, Goldberg AC, Marti LC (2012) Isolation and characterization of mesenchymal stem cells obtained from reusable and disposable bone marrow collection filters. Einstein (Sao Paulo) 10(3):296–301CrossRefGoogle Scholar
  41. 41.
    Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36(10):2566–2573.  https://doi.org/10.1002/eji.200636416 CrossRefPubMedGoogle Scholar
  42. 42.
    Ma L, Aijima R, Hoshino Y, Yamaza H, Tomoda E, Tanaka Y, Sonoda S, Song G et al (2015) Transplantation of mesenchymal stem cells ameliorates secondary osteoporosis through interleukin-17-impaired functions of recipient bone marrow mesenchymal stem cells in MRL/lpr mice. Stem Cell Res Ther 6:104.  https://doi.org/10.1186/s13287-015-0091-4 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sun S, Chen G, Xu M, Qiao Y, Zheng S (2013) Differentiation and migration of bone marrow mesenchymal stem cells transplanted through the spleen in rats with portal hypertension. PLoS One 8(12):e83523.  https://doi.org/10.1371/journal.pone.0083523 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    de Aro AA, Carneiro GD, Teodoro LFR, da Veiga FC, Ferrucci DL, Simoes GF, Simoes PW, Alvares LE, et al. (2018) Injured Achilles tendons treated with adipose-derived stem cells transplantation and GDF-5. Cells 7 (9). pii: E127 https://doi.org/10.3390/cells7090127
  45. 45.
    Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V et al (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15(1):36–45.  https://doi.org/10.7150/ijms.21666 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yagi H, Kitagawa Y (2013) The role of mesenchymal stem cells in cancer development. Front Genet 4:261.  https://doi.org/10.3389/fgene.2013.00261 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lee HY, Hong IS (2017) Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci 108(10):1939–1946.  https://doi.org/10.1111/cas.13334 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ridge SM, Sullivan FJ, Glynn SA (2017) Mesenchymal stem cells: key players in cancer progression. Mol Cancer 16(1):31.  https://doi.org/10.1186/s12943-017-0597-8 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675.  https://doi.org/10.1146/annurev-cellbio-100913-013116 CrossRefPubMedGoogle Scholar
  50. 50.
    Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19(10):1129–1155.  https://doi.org/10.1101/gad.1303605 CrossRefPubMedGoogle Scholar
  51. 51.
    Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186.  https://doi.org/10.1038/nprot.2008.92 CrossRefPubMedGoogle Scholar
  52. 52.
    Mochizuki H, Choong CJ, Yasuda T (2014) The promises of stem cells: stem cell therapy for movement disorders. Parkinsonism Relat Disord 20(Suppl 1):S128–S131.  https://doi.org/10.1016/S1353-8020(13)70031-2 CrossRefPubMedGoogle Scholar
  53. 53.
    Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85(2):635–678.  https://doi.org/10.1152/physrev.00054.2003 CrossRefPubMedGoogle Scholar
  54. 54.
    Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N et al (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36(30):2011–2017.  https://doi.org/10.1093/eurheartj/ehv189 CrossRefPubMedGoogle Scholar
  55. 55.
    Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futakuchi-Tsuchida A, Couture L, Vogel KW et al (2018) Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36(7):597–605.  https://doi.org/10.1038/nbt.4162 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720.  https://doi.org/10.1016/S0140-6736(12)60028-2 CrossRefPubMedGoogle Scholar
  57. 57.
    Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516.  https://doi.org/10.1016/S0140-6736(14)61376-3 CrossRefPubMedGoogle Scholar
  58. 58.
    Tani K (2015) Towards the safer clinical translation of human induced pluripotent stem cell-derived cells to regenerative medicine. Mol Ther Methods Clin Dev 2:15032.  https://doi.org/10.1038/mtm.2015.32 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kim N, Cho SG (2013) Clinical applications of mesenchymal stem cells. Korean J Intern Med 28(4):387–402.  https://doi.org/10.3904/kjim.2013.28.4.387 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rojas M, Meruane M (2012) Potential evolutionary cell and regenerative medicine. Int J Morphol 30(4):1243–1251CrossRefGoogle Scholar
  61. 61.
    Yu KR, Yang SR, Jung JW, Kim H, Ko K, Han DW, Park SB, Choi SW et al (2012) CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30(5):876–887.  https://doi.org/10.1002/stem.1052 CrossRefPubMedGoogle Scholar
  62. 62.
    Ali F, Stott SR, Barker RA (2014) Stem cells and the treatment of Parkinson's disease. Exp Neurol 260:3–11.  https://doi.org/10.1016/j.expneurol.2012.12.017 CrossRefPubMedGoogle Scholar
  63. 63.
    Hassan WU, Greiser U, Wang W (2014) Role of adipose-derived stem cells in wound healing. Wound Repair Regen 22(3):313–325.  https://doi.org/10.1111/wrr.12173 CrossRefPubMedGoogle Scholar
  64. 64.
    Katsuda T, Kosaka N, Takeshita F, Ochiya T (2013) The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 13(10–11):1637–1653.  https://doi.org/10.1002/pmic.201200373 CrossRefPubMedGoogle Scholar
  65. 65.
    De Feo D, Merlini A, Laterza C, Martino G (2012) Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. Curr Opin Neurol 25(3):322–333.  https://doi.org/10.1097/WCO.0b013e328352ec45 CrossRefPubMedGoogle Scholar
  66. 66.
    Brunt KR, Weisel RD, Li RK (2012) Stem cells and regenerative medicine—future perspectives. Can J Physiol Pharmacol 90(3):327–335.  https://doi.org/10.1139/y2012-007 CrossRefPubMedGoogle Scholar
  67. 67.
    Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G et al (2012) Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488(7413):652–655.  https://doi.org/10.1038/nature11333 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer's disease. J Mol Cell Biol 6(1):64–74CrossRefGoogle Scholar
  69. 69.
    Forostyak S, Jendelova P, Sykova E (2013) The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95(12):2257–2270.  https://doi.org/10.1016/j.biochi.2013.08.004 CrossRefPubMedGoogle Scholar
  70. 70.
    Srinageshwar B, Maiti P, Dunbar GL, Rossignol J (2016) Role of epigenetics in stem cell proliferation and differentiation: implications for treating neurodegenerative diseases. Int J Mol Sci 17 (2). pii: E199  https://doi.org/10.3390/ijms17020199
  71. 71.
    Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A et al (2009) Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977.  https://doi.org/10.1016/j.cell.2009.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107(9):4335–4340.  https://doi.org/10.1073/pnas.0910012107 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Nori S, Okada Y, Yasuda A, Tsuji O, Takahashi Y, Kobayashi Y, Fujiyoshi K, Koike M et al (2011) Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 108(40):16825–16830.  https://doi.org/10.1073/pnas.1108077108 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G, Szekely AM, Horvath TL, Vaccarino FM (2012) Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci U S A 109(31):12770–12775.  https://doi.org/10.1073/pnas.1202944109 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539.  https://doi.org/10.1016/j.cell.2010.10.016 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kassem M (2004) Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 6(4):369–374.  https://doi.org/10.1089/clo.2004.6.369 CrossRefPubMedGoogle Scholar
  77. 77.
    Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827.  https://doi.org/10.1634/stemcells.2006-0589 CrossRefPubMedGoogle Scholar
  78. 78.
    Guadix JA, Zugaza JL, Galvez-Martin P (2017) Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med Clin (Barc) 148(9):408–414.  https://doi.org/10.1016/j.medcli.2016.11.033 CrossRefGoogle Scholar
  79. 79.
    De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109.  https://doi.org/10.1159/000071150 CrossRefPubMedGoogle Scholar
  80. 80.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301.  https://doi.org/10.1634/stemcells.2005-0342 CrossRefPubMedGoogle Scholar
  81. 81.
    Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY et al (2013) Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 8(8):e72604.  https://doi.org/10.1371/journal.pone.0072604 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ribeiro CA, Fraga JS, Graos M, Neves NM, Reis RL, Gimble JM, Sousa N, Salgado AJ (2012) The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther 3(3):18.  https://doi.org/10.1186/scrt109 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Vessey CJ, de la Hall PM (2001) Hepatic stem cells: a review. Pathology 33(2):130–141CrossRefGoogle Scholar
  84. 84.
    Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132(4):583–597.  https://doi.org/10.1016/j.cell.2008.02.007 CrossRefPubMedGoogle Scholar
  85. 85.
    Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648.  https://doi.org/10.1016/j.cell.2004.08.012 CrossRefPubMedGoogle Scholar
  86. 86.
    Christiano AM (2004) Epithelial stem cells: stepping out of their niche. Cell 118(5):530–532.  https://doi.org/10.1016/j.cell.2004.08.024 CrossRefPubMedGoogle Scholar
  87. 87.
    Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778CrossRefGoogle Scholar
  88. 88.
    Behrstock, Soshana, and Svendsen, Clive(Jan 2006) Neural Stem Cells. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1038/npg.els.0005765]Google Scholar
  89. 89.
    Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29.  https://doi.org/10.1186/1479-5876-9-29 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749.  https://doi.org/10.1634/stemcells.2007-0197 CrossRefPubMedGoogle Scholar
  91. 91.
    Rigotti G, Marchi A, Sbarbati A (2009) Adipose-derived mesenchymal stem cells: past, present, and future. Aesthet Plast Surg 33(3):271–273.  https://doi.org/10.1007/s00266-009-9339-7 CrossRefGoogle Scholar
  92. 92.
    Locke M, Windsor J, Dunbar PR (2009) Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 79(4):235–244.  https://doi.org/10.1111/j.1445-2197.2009.04852.x CrossRefPubMedGoogle Scholar
  93. 93.
    Sadat S, Gehmert S, Song Y-H, Yen Y, Bai X, Gaiser S, Klein H, Alt E (2007) The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun 363(3):674–679CrossRefGoogle Scholar
  94. 94.
    Lim JS, Yoo G (2010) Effects of adipose-derived stromal cells and of their extract on wound healing in a mouse model. J Korean Med Sci 25(5):746–751CrossRefGoogle Scholar
  95. 95.
    Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437CrossRefGoogle Scholar
  96. 96.
    Lavoie JR, Rosu-Myles M (2013) Uncovering the secrets of mesenchymal stem cells. Biochimie 95(12):2212–2221.  https://doi.org/10.1016/j.biochi.2013.06.017 CrossRefPubMedGoogle Scholar
  97. 97.
    Silva NA, Gimble JM, Sousa N, Reis RL, Salgado AJ (2013) Combining adult stem cells and olfactory ensheathing cells: the secretome effect. Stem Cells Dev 22(8):1232–1240.  https://doi.org/10.1089/scd.2012.0524 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823.  https://doi.org/10.1038/mt.2015.44 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Wang Z, Wang Y, Gutkind JS, Wang F, Lu J, Niu G, Teng G, Chen X (2015) Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells 33(2):456–467.  https://doi.org/10.1002/stem.1878 CrossRefPubMedGoogle Scholar
  100. 100.
    Rani S, Ritter T (2016) The exosome—a naturally secreted nanoparticle and its application to wound healing. Adv Mater 28(27):5542–5552.  https://doi.org/10.1002/adma.201504009 CrossRefPubMedGoogle Scholar
  101. 101.
    Wu L, Wang T, Ge Y, Cai X, Wang J, Lin Y (2012) Secreted factors from adipose tissue increase adipogenic differentiation of mesenchymal stem cells. Cell Prolif 45(4):311–319.  https://doi.org/10.1111/j.1365-2184.2012.00823.x CrossRefPubMedGoogle Scholar
  102. 102.
    Shabbir A, Zisa D, Suzuki G, Lee T (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296(6):H1888–H1897.  https://doi.org/10.1152/ajpheart.00186.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Caccia D, Dugo M, Callari M, Bongarzone I (2013) Bioinformatics tools for secretome analysis. Biochim Biophys Acta 1834(11):2442–2453.  https://doi.org/10.1016/j.bbapap.2013.01.039 CrossRefPubMedGoogle Scholar
  104. 104.
    Madrigal M, Rao KS, Riordan NH (2014) A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 12:260.  https://doi.org/10.1186/s12967-014-0260-8 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Golchin A, Hosseinzadeh S, Ardeshirylajimi A (2018) The exosomes released from different cell types and their effects in wound healing. J Cell Biochem 119(7):5043–5052.  https://doi.org/10.1002/jcb.26706 CrossRefPubMedGoogle Scholar
  106. 106.
    Wu P, Zhang B, Shi H, Qian H, Xu W (2018) MSC-exosome: a novel cell-free therapy for cutaneous regeneration. Cytotherapy 20(3):291–301.  https://doi.org/10.1016/j.jcyt.2017.11.002 CrossRefPubMedGoogle Scholar
  107. 107.
    Lunyak VV, Amaro-Ortiz A, Gaur M (2017) Mesenchymal stem cells secretory responses: senescence messaging secretome and immunomodulation perspective. Front Genet 8:220.  https://doi.org/10.3389/fgene.2017.00220 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Seo M, Kim JC, Kim HK, Choi EW, Jeong S, Nam KC, Jang M (2018) A novel secretory vesicle from deer antlerogenic mesenchymal stem cell-conditioned media (DaMSC-CM) promotes tissue regeneration. Stem Cells Int 2018:3891404.  https://doi.org/10.1155/2018/3891404 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Xitong D, Xiaorong Z (2016) Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene 575(2 Pt 2):377–384.  https://doi.org/10.1016/j.gene.2015.08.067 CrossRefPubMedGoogle Scholar
  110. 110.
    Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066.  https://doi.org/10.3402/jev.v4.27066 CrossRefPubMedGoogle Scholar
  111. 111.
    Castro-Manrreza ME, Montesinos JJ (2015) Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015:394917.  https://doi.org/10.1155/2015/394917 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Cao W, Cao K, Cao J, Wang Y, Shi Y (2015) Mesenchymal stem cells and adaptive immune responses. Immunol Lett 168(2):147–153.  https://doi.org/10.1016/j.imlet.2015.06.003 CrossRefPubMedGoogle Scholar
  113. 113.
    Burrello J, Monticone S, Gai C, Gomez Y, Kholia S, Camussi G (2016) Stem cell-derived extracellular vesicles and immune-modulation. Front Cell Dev Biol 4:83.  https://doi.org/10.3389/fcell.2016.00083 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476.  https://doi.org/10.1038/ncb1800 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21.  https://doi.org/10.1016/j.ygyno.2008.04.033 CrossRefPubMedGoogle Scholar
  116. 116.
    Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S (2008) MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14(9):2690–2695.  https://doi.org/10.1158/1078-0432.CCR-07-1731 CrossRefPubMedGoogle Scholar
  117. 117.
    Lai RC, Yeo RW, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88.  https://doi.org/10.1016/j.semcdb.2015.03.001 CrossRefPubMedGoogle Scholar
  118. 118.
    Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y et al (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589(11):1257–1265.  https://doi.org/10.1016/j.febslet.2015.03.031 CrossRefPubMedGoogle Scholar
  119. 119.
    Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147(1–2):47–54.  https://doi.org/10.1016/j.imlet.2012.06.001 CrossRefPubMedGoogle Scholar
  120. 120.
    Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L et al (2015) HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 33(7):2158–2168.  https://doi.org/10.1002/stem.1771 CrossRefPubMedGoogle Scholar
  121. 121.
    Wu S, Ju GQ, Du T, Zhu YJ, Liu GH (2013) Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 8(4):e61366.  https://doi.org/10.1371/journal.pone.0061366 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y et al (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22(6):845–854.  https://doi.org/10.1089/scd.2012.0395 CrossRefPubMedGoogle Scholar
  123. 123.
    Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222.  https://doi.org/10.1016/j.scr.2009.12.003 CrossRefPubMedGoogle Scholar
  124. 124.
    Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA et al (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32(1):116–125.  https://doi.org/10.1002/stem.1504 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Arsenijevic N, Volarevic V (2018) Therapeutic potential of mesenchymal stem cell-derived exosomes in the treatment of eye diseases. Adv Exp Med Biol.  https://doi.org/10.1007/5584_2018_219
  126. 126.
    Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157.  https://doi.org/10.3390/ijms15034142 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong Y (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122(4):856–867.  https://doi.org/10.3171/2014.11.JNS14770 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B (2016) Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci 10:109.  https://doi.org/10.3389/fncel.2016.00109 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Nakano M, Nagaishi K, Konari N, Saito Y, Chikenji T, Mizue Y, Fujimiya M (2016) Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep 6:24805.  https://doi.org/10.1038/srep24805 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD (2018) Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One 13(1):e0190358.  https://doi.org/10.1371/journal.pone.0190358 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M (2017) Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant 26(2):243–257.  https://doi.org/10.3727/096368916X693031 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Lafourcade C, Ramirez JP, Luarte A, Fernandez A, Wyneken U (2016) MiRNAs in astrocyte-derived exosomes as possible mediators of neuronal plasticity. J Exp Neurosci 10(Suppl 1):1–9.  https://doi.org/10.4137/JEN.S39916 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Farinazzo A, Angiari S, Turano E, Bistaffa E, Dusi S, Ruggieri S, Bonafede R, Mariotti R et al (2018) Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis. Sci Rep 8(1):7473.  https://doi.org/10.1038/s41598-018-25676-2 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Han Y, Seyfried D, Meng Y, Yang D, Schultz L, Chopp M (2018) Multipotent mesenchymal stromal cell-derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J Neurosurg 1–11. doi: https://doi.org/10.3171/2018.2.JNS171475
  135. 135.
    Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, Ali M, Mahmood A et al (2017) Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 111:69–81.  https://doi.org/10.1016/j.neuint.2016.08.003 CrossRefPubMedGoogle Scholar
  136. 136.
    Duan X, Lu L, Wang Y, Zhang F, Mao J, Cao M, Lin B, Zhang X et al (2017) The long-term fate of mesenchymal stem cells labeled with magnetic resonance imaging-visible polymersomes in cerebral ischemia. Int J Nanomedicine 12:6705–6719.  https://doi.org/10.2147/IJN.S146742 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Chiellini C, Cochet O, Negroni L, Samson M, Poggi M, Ailhaud G, Alessi MC, Dani C et al (2008) Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol Biol 9:26.  https://doi.org/10.1186/1471-2199-9-26 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    DeLany JP, Floyd ZE, Zvonic S, Smith A, Gravois A, Reiners E, Wu X, Kilroy G et al (2005) Proteomic analysis of primary cultures of human adipose-derived stem cells: modulation by adipogenesis. Mol Cell Proteomics 4(6):731–740.  https://doi.org/10.1074/mcp.M400198-MCP200 CrossRefPubMedGoogle Scholar
  139. 139.
    Lo Furno D, Mannino G, Giuffrida R (2018) Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol 233(5):3982–3999.  https://doi.org/10.1002/jcp.26192 CrossRefPubMedGoogle Scholar
  140. 140.
    De la Rosa MB, Kozik EM, Sakaguchi DS (2018) Adult stem cell-based strategies for peripheral nerve regeneration. Adv Exp Med Biol.  https://doi.org/10.1007/5584_2018_254
  141. 141.
    Kim DH, Lee D, Lim H, Choi SJ, Oh W, Yang YS, Chang JH, Jeon HB (2018) Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in in vitro and in vivo models of Alzheimer's disease. Biochem Biophys Res Commun 504(4):933–940.  https://doi.org/10.1016/j.bbrc.2018.09.012 CrossRefPubMedGoogle Scholar
  142. 142.
    Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–946.  https://doi.org/10.2217/rme.10.72 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Barile L, Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther 174:63–78.  https://doi.org/10.1016/j.pharmthera.2017.02.020 CrossRefPubMedGoogle Scholar
  144. 144.
    Gnecchi M, Danieli P, Cervio E (2012) Mesenchymal stem cell therapy for heart disease. Vasc Pharmacol 57(1):48–55.  https://doi.org/10.1016/j.vph.2012.04.002 CrossRefGoogle Scholar
  145. 145.
    Bartolucci J, Verdugo FJ, Gonzalez PL, Larrea RE, Abarzua E, Goset C, Rojo P, Palma I et al (2017) Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res 121(10):1192–1204.  https://doi.org/10.1161/CIRCRESAHA.117.310712 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Kemp K, Hares K, Mallam E, Heesom KJ, Scolding N, Wilkins A (2010) Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem 114(6):1569–1580.  https://doi.org/10.1111/j.1471-4159.2009.06553.x CrossRefPubMedGoogle Scholar
  147. 147.
    Um S, Kim HY, Lee JH, Song IS, Seo BM (2017) TSG-6 secreted by mesenchymal stem cells suppresses immune reactions influenced by BMP-2 through p38 and MEK mitogen-activated protein kinase pathway. Cell Tissue Res 368(3):551–561.  https://doi.org/10.1007/s00441-017-2581-4 CrossRefPubMedGoogle Scholar
  148. 148.
    Day AJ, Milner CM (2018) TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol.  https://doi.org/10.1016/j.matbio.2018.01.011
  149. 149.
    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312.  https://doi.org/10.1016/j.scr.2013.01.002 CrossRefPubMedGoogle Scholar
  150. 150.
    Uccelli A, Pistoia V, Moretta L (2007) Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 28(5):219–226.  https://doi.org/10.1016/j.it.2007.03.001 CrossRefPubMedGoogle Scholar
  151. 151.
    Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067.  https://doi.org/10.1681/ASN.2008070798 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, Sordi A, Biancone L et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82(4):412–427.  https://doi.org/10.1038/ki.2012.105 CrossRefPubMedGoogle Scholar
  153. 153.
    Lai WH, Ho JC, Chan YC, Ng JH, Au KW, Wong LY, Siu CW, Tse HF (2013) Attenuation of hind-limb ischemia in mice with endothelial-like cells derived from different sources of human stem cells. PLoS One 8(3):e57876.  https://doi.org/10.1371/journal.pone.0057876 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Jackson WM, Nesti LJ, Tuan RS (2012) Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 3(3):20.  https://doi.org/10.1186/scrt111 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Li M, Luan F, Zhao Y, Hao H, Liu J, Dong L, Fu X, Han W (2017) Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J 14(1):64–73.  https://doi.org/10.1111/iwj.12551 CrossRefPubMedGoogle Scholar
  156. 156.
    Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M (2012) Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 18(13–14):1479–1489.  https://doi.org/10.1089/ten.TEA.2011.0325 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Park EH, Lim HS, Lee S, Roh K, Seo KW, Kang KS, Shin K (2018) Intravenous infusion of umbilical cord blood-derived mesenchymal stem cells in rheumatoid arthritis: a phase Ia clinical trial. Stem Cells Transl Med 7(9):636–642.  https://doi.org/10.1002/sctm.18-0031 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Maumus M, Manferdini C, Toupet K, Peyrafitte JA, Ferreira R, Facchini A, Gabusi E, Bourin P et al (2013) Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res 11(2):834–844.  https://doi.org/10.1016/j.scr.2013.05.008 CrossRefPubMedGoogle Scholar
  159. 159.
    Kota DJ, Wiggins LL, Yoon N, Lee RH (2013) TSG-6 produced by hMSCs delays the onset of autoimmune diabetes by suppressing Th1 development and enhancing tolerogenicity. Diabetes 62(6):2048–2058.  https://doi.org/10.2337/db12-0931 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Kim HS, Lee JH, Roh KH, Jun HJ, Kang KS, Kim TY (2017) Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies. Stem Cells 35(1):248–255.  https://doi.org/10.1002/stem.2401 CrossRefPubMedGoogle Scholar
  161. 161.
    da Silva AF, Silva K, Reis LA, Teixeira VP, Schor N (2015) Bone marrow-derived mesenchymal stem cells and their conditioned medium attenuate fibrosis in an irreversible model of unilateral ureteral obstruction. Cell Transplant 24(12):2657–2666.  https://doi.org/10.3727/096368915X687534 CrossRefPubMedGoogle Scholar
  162. 162.
    Shen C, Lie P, Miao T, Yu M, Lu Q, Feng T, Li J, Zu T et al (2015) Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep 12(1):20–30.  https://doi.org/10.3892/mmr.2015.3409 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Kawai T, Katagiri W, Osugi M, Sugimura Y, Hibi H, Ueda M (2015) Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration. Cytotherapy 17(4):369–381.  https://doi.org/10.1016/j.jcyt.2014.11.009 CrossRefPubMedGoogle Scholar
  164. 164.
    Chuang TJ, Lin KC, Chio CC, Wang CC, Chang CP, Kuo JR (2012) Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. J Trauma Acute Care Surg 73(5):1161–1167.  https://doi.org/10.1097/TA.0b013e318265d128 CrossRefPubMedGoogle Scholar
  165. 165.
    Shiue SJ, Rau RH, Shiue HS, Hung YW, Li ZX, Yang KD, Cheng JK (2019) Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain 160(1):210–223.  https://doi.org/10.1097/j.pain.0000000000001395 CrossRefPubMedGoogle Scholar
  166. 166.
    Gama KB, Santos DS, Evangelista AF, Silva DN, de Alcantara AC, Dos Santos RR, Soares MBP, Villarreal CF (2018) Conditioned medium of bone marrow-derived mesenchymal stromal cells as a therapeutic approach to neuropathic pain: a preclinical evaluation. Stem Cells Int 2018:8179013.  https://doi.org/10.1155/2018/8179013 CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT (2013) Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 124(3):165–176.  https://doi.org/10.1042/CS20120226 CrossRefGoogle Scholar
  168. 168.
    Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-Dos-Santos G, Gubert F, de Figueiredo AB, Torres AL, Paredes BD et al (2014) Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One 9(10):e110722.  https://doi.org/10.1371/journal.pone.0110722 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Papazian I, Kyrargyri V, Evangelidou M, Voulgari-Kokota A, Probert L (2018) Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface GluR1, and is partly mediated by TNF. Int J Mol Sci 19(3). pii: E651 https://doi.org/10.3390/ijms19030651
  170. 170.
    Wang F, Yasuhara T, Shingo T, Kameda M, Tajiri N, Yuan WJ, Kondo A, Kadota T et al (2010) Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci 11:52.  https://doi.org/10.1186/1471-2202-11-52 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Dahbour S, Jamali F, Alhattab D, Al-Radaideh A, Ababneh O, Al-Ryalat N, Al-Bdour M, Hourani B et al (2017) Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: clinical, ophthalmological and radiological assessments of safety and efficacy. CNS Neurosci Ther 23(11):866–874.  https://doi.org/10.1111/cns.12759 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3(1):63–70.  https://doi.org/10.1016/j.scr.2009.02.006 CrossRefPubMedGoogle Scholar
  173. 173.
    Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, Sousa N, Salgado AJ et al (2017) Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep 7(1):4153.  https://doi.org/10.1038/s41598-017-03592-1 CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Brick RM, Sun AX, Tuan RS (2018) Neurotrophically induced mesenchymal progenitor cells derived from induced pluripotent stem cells enhance neuritogenesis via neurotrophin and cytokine production. Stem Cells Transl Med 7(1):45–58.  https://doi.org/10.1002/sctm.17-0108 CrossRefPubMedGoogle Scholar
  175. 175.
    Tsai M-J, Tsai S-K, Hu B-R, Liou D-Y, Huang S-L, Huang M-C, Huang W-C, Cheng H et al (2014) Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci 21(1):5.  https://doi.org/10.1186/1423-0127-21-5 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Mukai T, Tojo A, Nagamura-Inoue T (2018) Umbilical cord-derived mesenchymal stromal cells contribute to neuroprotection in neonatal cortical neurons damaged by oxygen-glucose deprivation. Front Neurol 9:466.  https://doi.org/10.3389/fneur.2018.00466 CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Liang CM, Weng SJ, Tsai TH, Li IH, Lu PH, Ma KH, Tai MC, Chen JT et al (2014) Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells. Cytotherapy 16(10):1371–1383.  https://doi.org/10.1016/j.jcyt.2014.05.015 CrossRefPubMedGoogle Scholar
  178. 178.
    Ahn SY, Chang YS, Sung DK, Sung SI, Ahn JY, Park WS (2017) Pivotal role of brain-derived neurotrophic factor secreted by mesenchymal stem cells in severe intraventricular hemorrhage in newborn rats. Cell Transplant 26(1):145–156.  https://doi.org/10.3727/096368916X692861 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Zemel'ko VI, Kozhukharova IB, Alekseenko LL, Domnina AP, Reshetnikova GF, Puzanov MV, Dmitrieva RI, Grinchuk TM et al (2013) [Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a comparative study]. Tsitologiia 55(2):101–110PubMedGoogle Scholar
  180. 180.
    Mukai T, Mori Y, Shimazu T, Takahashi A, Tsunoda H, Yamaguchi S, Kiryu S, Tojo A et al (2017) Intravenous injection of umbilical cord-derived mesenchymal stromal cells attenuates reactive gliosis and hypomyelination in a neonatal intraventricular hemorrhage model. Neuroscience 355:175–187.  https://doi.org/10.1016/j.neuroscience.2017.05.006 CrossRefPubMedGoogle Scholar
  181. 181.
    Scheibe F, Klein O, Klose J, Priller J (2012) Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol 32(4):567–576.  https://doi.org/10.1007/s10571-012-9798-2 CrossRefPubMedGoogle Scholar
  182. 182.
    McKee AC, Daneshvar DH (2015) The neuropathology of traumatic brain injury. Handb Clin Neurol 127:45–66.  https://doi.org/10.1016/B978-0-444-52892-6.00004-0 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Ling H, Hardy J, Zetterberg H (2015) Neurological consequences of traumatic brain injuries in sports. Mol Cell Neurosci 66(Pt B):114–122.  https://doi.org/10.1016/j.mcn.2015.03.012 CrossRefPubMedGoogle Scholar
  184. 184.
    Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 6(6):1307–1315.  https://doi.org/10.1242/dmm.011585 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Quijano MC, Cuervo MT, Aponte M, Arango JC (2012) Neuropsicología del trauma craneoencefálico en Cali. Colombia 10(1):11Google Scholar
  186. 186.
    Albert-Weissenberger C, Siren AL, Kleinschnitz C (2013) Ischemic stroke and traumatic brain injury: the role of the kallikrein-kinin system. Prog Neurobiol 101-102:65–82.  https://doi.org/10.1016/j.pneurobio.2012.11.004 CrossRefPubMedGoogle Scholar
  187. 187.
    Oliva AA Jr, Kang Y, Sanchez-Molano J, Furones C, Atkins CM (2012) STAT3 signaling after traumatic brain injury. J Neurochem 120(5):710–720.  https://doi.org/10.1111/j.1471-4159.2011.07610.x CrossRefPubMedGoogle Scholar
  188. 188.
    Hinzman JM, Thomas TC, Quintero JE, Gerhardt GA, Lifshitz J (2012) Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma 29(6):1197–1208.  https://doi.org/10.1089/neu.2011.2261 CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Cao T, Thomas TC, Ziebell JM, Pauly JR, Lifshitz J (2012) Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 225:65–75.  https://doi.org/10.1016/j.neuroscience.2012.08.058 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23(2):137–149.  https://doi.org/10.1097/01.WCB.0000044631.80210.3C CrossRefPubMedGoogle Scholar
  191. 191.
    Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 71(2):107–113.  https://doi.org/10.1016/j.neures.2011.06.004 CrossRefPubMedGoogle Scholar
  192. 192.
    Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, Chen Y, Su H et al (2010) Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol 67(4):488–497.  https://doi.org/10.1002/ana.21919 CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Wei H, Mao Q, Liu L, Xu Y, Chen J, Jiang R, Yin L, Fan Y et al (2011) Changes and function of circulating endothelial progenitor cells in patients with cerebral aneurysm. J Neurosci Res 89(11):1822–1828.  https://doi.org/10.1002/jnr.22696 CrossRefPubMedGoogle Scholar
  194. 194.
    Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS (2009) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110(6):1189–1197.  https://doi.org/10.3171/2008.9.JNS08158 CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Gao J, Prough DS, McAdoo DJ, Grady JJ, Parsley MO, Ma L, Tarensenko YI, Wu P (2006) Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol 201(2):281–292.  https://doi.org/10.1016/j.expneurol.2006.04.039 CrossRefPubMedGoogle Scholar
  196. 196.
    Thonhoff JR, Lou DI, Jordan PM, Zhao X, Wu P (2008) Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51.  https://doi.org/10.1016/j.brainres.2007.10.046 CrossRefPubMedGoogle Scholar
  197. 197.
    Otsuka T, Imura T, Nakagawa K, Shrestha L, Takahashi S, Kawahara Y, Sueda T, Kurisu K et al (2018) Simulated microgravity culture enhances the neuroprotective effects of human cranial bone-derived mesenchymal stem cells in traumatic brain injury. Stem Cells Dev 27(18):1287–1297.  https://doi.org/10.1089/scd.2017.0299 CrossRefPubMedGoogle Scholar
  198. 198.
    Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells—current trends and future prospective. Biosci Rep 35(2):1–18.  https://doi.org/10.1042/BSR20150025 CrossRefGoogle Scholar
  199. 199.
    Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their clinical implications. BMJ 348:f7656.  https://doi.org/10.1136/bmj.f7656 CrossRefPubMedGoogle Scholar
  200. 200.
    de Pedro-Cuesta J, Rabano A, Martinez-Martin P, Ruiz-Tovar M, Alcalde-Cabero E, Almazan-Isla J, Avellanal F, Calero M (2015) Comparative incidence of conformational, neurodegenerative disorders. PLoS One 10(9):e0137342.  https://doi.org/10.1371/journal.pone.0137342 CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124(2):225–250.  https://doi.org/10.1093/toxsci/kfr239 CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Olson SD, Pollock K, Kambal A, Cary W, Mitchell GM, Tempkin J, Stewart H, McGee J et al (2012) Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease. Mol Neurobiol 45(1):87–98.  https://doi.org/10.1007/s12035-011-8219-8 CrossRefPubMedGoogle Scholar
  203. 203.
    Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S (2013) The stem cell secretome and its role in brain repair. Biochimie 95(12):2271–2285.  https://doi.org/10.1016/j.biochi.2013.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Kim EK, Lim S, Park JM, Seo JK, Kim JH, Kim KT, Ryu SH, Suh PG (2012) Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase. J Cell Physiol 227(4):1680–1687.  https://doi.org/10.1002/jcp.22892 CrossRefPubMedGoogle Scholar
  205. 205.
    Burke RE, O'Malley K (2013) Axon degeneration in Parkinson's disease. Exp Neurol 246:72–83.  https://doi.org/10.1016/j.expneurol.2012.01.011 CrossRefPubMedGoogle Scholar
  206. 206.
    Tagliaferro P, Burke RE (2016) Retrograde axonal degeneration in Parkinson disease. J Park Dis 6(1):1–15.  https://doi.org/10.3233/JPD-150769 CrossRefGoogle Scholar
  207. 207.
    Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96.  https://doi.org/10.1016/j.brainres.2011.10.038 CrossRefPubMedGoogle Scholar
  208. 208.
    Hoban DB, Howard L, Dowd E (2015) GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson's disease. Neuroscience 303:402–411.  https://doi.org/10.1016/j.neuroscience.2015.07.014 CrossRefPubMedGoogle Scholar
  209. 209.
    Datta I, Bhonde R (2012) Can mesenchymal stem cells reduce vulnerability of dopaminergic neurons in the substantia nigra to oxidative insult in individuals at risk to Parkinson's disease? Cell Biol Int 36(7):617–624.  https://doi.org/10.1042/CBI20110602 CrossRefPubMedGoogle Scholar
  210. 210.
    Cruz-Martinez P, Gonzalez-Granero S, Molina-Navarro MM, Pacheco-Torres J, Garcia-Verdugo JM, Geijo-Barrientos E, Jones J, Martinez S (2016) Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model. Cell Death Dis 7:e2223.  https://doi.org/10.1038/cddis.2016.130 CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I, Vaknin-Dembinsky A, Ben-Hur T et al (2016) Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol 73(3):337–344.  https://doi.org/10.1001/jamaneurol.2015.4321 CrossRefPubMedGoogle Scholar
  212. 212.
    Kim HY, Kim H, Oh KW, Oh SI, Koh SH, Baik W, Noh MY, Kim KS et al (2014) Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: an investigator-initiated trial and in vivo study. Stem Cells 32(10):2724–2731.  https://doi.org/10.1002/stem.1770 CrossRefPubMedGoogle Scholar
  213. 213.
    Mayeux R, Stern Y (2012) Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2(8). pii: a006239 https://doi.org/10.1101/cshperspect.a006239
  214. 214.
    Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128PubMedPubMedCentralGoogle Scholar
  215. 215.
    Kim DH, Lee D, Chang EH, Kim JH, Hwang JW, Kim JY, Kyung JW, Kim SH et al (2015) GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model. Stem Cells Dev 24(20):2378–2390.  https://doi.org/10.1089/scd.2014.0487 CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ et al (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell Death Differ 19(4):680–691.  https://doi.org/10.1038/cdd.2011.140 CrossRefPubMedGoogle Scholar
  217. 217.
    Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, Choi SJ, Kwon H et al (2015) Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer's disease dementia: a phase 1 clinical trial. Alzheimers Dement (N Y) 1(2):95–102.  https://doi.org/10.1016/j.trci.2015.06.007 CrossRefGoogle Scholar
  218. 218.
    Moraes L, Vasconcelos-dos-Santos A, Santana FC, Godoy MA, Rosado-de-Castro PH, Jasmin A-PRL, Cintra WM, Gasparetto EL et al (2012) Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington's disease. Stem Cell Res 9(2):143–155.  https://doi.org/10.1016/j.scr.2012.05.005 CrossRefPubMedGoogle Scholar
  219. 219.
    Nakano N, Nakai Y, Seo TB, Yamada Y, Ohno T, Yamanaka A, Nagai Y, Fukushima M et al (2010) Characterization of conditioned medium of cultured bone marrow stromal cells. Neurosci Lett 483(1):57–61.  https://doi.org/10.1016/j.neulet.2010.07.062 CrossRefPubMedGoogle Scholar
  220. 220.
    Assuncao-Silva RC, Mendes-Pinheiro B, Patricio P, Behie LA, Teixeira FG, Pinto L, Salgado AJ (2018) Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochimie. 155:83–91.  https://doi.org/10.1016/j.biochi.2018.07.026 CrossRefPubMedGoogle Scholar
  221. 221.
    Cizkova D, Cubinkova V, Smolek T, Murgoci AN, Danko J, Vdoviakova K, Humenik F, Cizek M, et al. (2018) Localized intrathecal delivery of mesenchymal stromal cells conditioned medium improves functional recovery in a rat model of spinal cord injury. Int J Mol Sci 19(3). pii: E870 https://doi.org/10.3390/ijms19030870
  222. 222.
    Caron I, Rossi F, Papa S, Aloe R, Sculco M, Mauri E, Sacchetti A, Erba E et al (2016) A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials 75:135–147.  https://doi.org/10.1016/j.biomaterials.2015.10.024 CrossRefPubMedGoogle Scholar
  223. 223.
    Endres M, Dirnagl U (2003) Ischemia and stroke. In: Molecular and cellular biology of neuroprotection in the CNS. Editors: Alzheimer, Christian (Ed.). Advances in Experimental Medicine and Biology, Springer, pp 455–473. Google Scholar
  224. 224.
    Neymotin SA, Taxin Z, Mohan A, Lipton P (2015) Brain ischemia and stroke. Encyclopedia of Computational Neuroscience 437–441Google Scholar
  225. 225.
    Kokai LE, Marra K, Rubin JP (2014) Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res 163(4):399–408.  https://doi.org/10.1016/j.trsl.2013.11.009 CrossRefPubMedGoogle Scholar
  226. 226.
    Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y et al (2011) Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 6(3):e17899CrossRefGoogle Scholar
  227. 227.
    Hiwatashi N, Hirano S, Mizuta M, Tateya I, Kanemaru S, Nakamura T, Ito J (2014) Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration. Laryngoscope 124(12):E461–E469.  https://doi.org/10.1002/lary.24816 CrossRefPubMedGoogle Scholar
  228. 228.
    Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD et al (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49(2):133–142.  https://doi.org/10.1016/j.jdermsci.2007.08.004 CrossRefPubMedGoogle Scholar
  229. 229.
    Zhou BR, Xu Y, Guo SL, Wang Y, Zhu F, Permatasari F, Wu D, Yin ZQ et al (2013) The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. Biomed Res Int 2013:519126.  https://doi.org/10.1155/2013/519126 CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Kim WS, Park BS, Park SH, Kim HK, Sung JH (2009) Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci 53(2):96–102.  https://doi.org/10.1016/j.jdermsci.2008.08.007 CrossRefPubMedGoogle Scholar
  231. 231.
    Hong SJ, Traktuev DO, March KL (2010) Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant 15(1):86–91.  https://doi.org/10.1097/MOT.0b013e328334f074 CrossRefPubMedGoogle Scholar
  232. 232.
    Dong L, Hao H, Liu J, Ti D, Tong C, Hou Q, Li M, Zheng J et al (2017) A conditioned medium of umbilical cord mesenchymal stem cells overexpressing Wnt7a promotes wound repair and regeneration of hair follicles in mice. Stem Cells Int 2017:3738071.  https://doi.org/10.1155/2017/3738071 CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Heo SJ, Thorpe SD, Driscoll TP, Duncan RL, Lee DA, Mauck RL (2015) Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci Rep 5:16895.  https://doi.org/10.1038/srep16895 CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Sugitani S, Tsuruma K, Ohno Y, Kuse Y, Yamauchi M, Egashira Y, Yoshimura S, Shimazawa M et al (2013) The potential neuroprotective effect of human adipose stem cells conditioned medium against light-induced retinal damage. Exp Eye Res 116:254–264.  https://doi.org/10.1016/j.exer.2013.09.013 CrossRefPubMedGoogle Scholar
  235. 235.
    Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J (2011) Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 20(2):205–216.  https://doi.org/10.3727/096368910X520065 CrossRefPubMedGoogle Scholar
  236. 236.
    Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197.  https://doi.org/10.1038/srep01197 CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Oses C, Olivares B, Ezquer M, Acosta C, Bosch P, Donoso M, Leniz P, Ezquer F (2017) Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS One 12(5):e0178011.  https://doi.org/10.1371/journal.pone.0178011 CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Palomares T, Cordero M, Bruzos-Cidon C, Torrecilla M, Ugedo L, Alonso-Varona A (2018) The neuroprotective effect of conditioned medium from human adipose-derived mesenchymal stem cells is impaired by N-acetyl cysteine supplementation. Mol Neurobiol 55(1):13–25CrossRefGoogle Scholar
  239. 239.
    Tan B, Luan Z, Wei X, He Y, Wei G, Johnstone BH, Farlow M, Du Y (2011) AMP-activated kinase mediates adipose stem cell-stimulated neuritogenesis of PC12 cells. Neuroscience 181:40–47.  https://doi.org/10.1016/j.neuroscience.2011.02.038 CrossRefPubMedGoogle Scholar
  240. 240.
    Lu S, Lu C, Han Q, Li J, Du Z, Liao L, Zhao RC (2011) Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology 279(1–3):189–195.  https://doi.org/10.1016/j.tox.2010.10.011 CrossRefPubMedGoogle Scholar
  241. 241.
    Song SY, Chung HM, Sung JH (2010) The pivotal role of VEGF in adipose-derived-stem-cell-mediated regeneration. Expert Opin Biol Ther 10(11):1529–1537.  https://doi.org/10.1517/14712598.2010.522987 CrossRefPubMedGoogle Scholar
  242. 242.
    Hampel U, Klonisch T, Sel S, Schulze U, Garreis F, Seitmann H, Zouboulis CC, Paulsen FP (2013) Insulin-like factor 3 promotes wound healing at the ocular surface. Endocrinology 154(6):2034–2045.  https://doi.org/10.1210/en.2012-2201 CrossRefPubMedGoogle Scholar
  243. 243.
    Kim WS, Park BS, Sung JH (2009) The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 9(7):879–887.  https://doi.org/10.1517/14712590903039684 CrossRefPubMedGoogle Scholar
  244. 244.
    Kapur SK, Katz AJ (2013) Review of the adipose derived stem cell secretome. Biochimie 95(12):2222–2228.  https://doi.org/10.1016/j.biochi.2013.06.001 CrossRefPubMedGoogle Scholar
  245. 245.
    Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y (2007) Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 13(6):1185–1195.  https://doi.org/10.1089/ten.2006.0315 CrossRefPubMedGoogle Scholar
  246. 246.
    Salgado AJ, Reis RL, Sousa NJ, Gimble JM (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5(2):103–110CrossRefGoogle Scholar
  247. 247.
    Machado Cde V, Telles PD, Nascimento IL (2013) Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter 35(1):62–67.  https://doi.org/10.5581/1516-8484.20130017 CrossRefPubMedGoogle Scholar
  248. 248.
    Kiess W, Petzold S, Topfer M, Garten A, Bluher S, Kapellen T, Korner A, Kratzsch J (2008) Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab 22(1):135–153.  https://doi.org/10.1016/j.beem.2007.10.002 CrossRefPubMedGoogle Scholar
  249. 249.
    Yang C, Lei D, Ouyang W, Ren J, Li H, Hu J, Huang S (2014) Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. Biomed Res Int 2014:109389.  https://doi.org/10.1155/2014/109389 CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Szekiova E, Slovinska L, Blasko J, Plsikova J, Cizkova D (2018) The neuroprotective effect of rat adipose tissue-derived mesenchymal stem cell-conditioned medium on cortical neurons using an in vitro model of SCI inflammation. Neurol Res 40(4):258–267.  https://doi.org/10.1080/01616412.2018.1432266 CrossRefPubMedGoogle Scholar
  251. 251.
    Zhao K, Li R, Gu C, Liu L, Jia Y, Guo X, Zhang W, Pei C et al (2017) Intravenous administration of adipose-derived stem cell protein extracts improves neurological deficits in a rat model of stroke. Stem Cells Int 2017:2153629.  https://doi.org/10.1155/2017/2153629 CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Jha KA, Pentecost M, Lenin R, Klaic L, Elshaer SL, Gentry J, Russell JM, Beland A, et al. (2018) Concentrated conditioned media from adipose tissue derived mesenchymal stem cells mitigates visual deficits and retinal inflammation following mild traumatic brain injury. Int J Mol Sci 19(7). pii: E2016 https://doi.org/10.3390/ijms19072016
  253. 253.
    Sofroniew MV (2014) Astrogliosis. Cold Spring Harb Perspect Biol 7(2):a020420.  https://doi.org/10.1101/cshperspect.a020420 CrossRefPubMedGoogle Scholar
  254. 254.
    Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16(1):79–106.  https://doi.org/10.1177/1073858409342593 CrossRefPubMedGoogle Scholar
  255. 255.
    Ooi YY, Dheen ST, Tay SS (2015) Paracrine effects of mesenchymal stem cells-conditioned medium on microglial cytokines expression and nitric oxide production. Neuroimmunomodulation 22(4):233–242.  https://doi.org/10.1159/000365483 CrossRefPubMedGoogle Scholar
  256. 256.
    Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A (2012) Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells 30(9):2044–2053.  https://doi.org/10.1002/stem.1174 CrossRefPubMedGoogle Scholar
  257. 257.
    Huang L, Xu G, Guo J, Xie M, Chen L, Xu W (2016) Mesenchymal stem cells modulate light-induced activation of retinal microglia through CX3CL1/CX3CR1 signaling. Ocul Immunol Inflamm 24(6):684–692.  https://doi.org/10.3109/09273948.2015.1071405 CrossRefPubMedGoogle Scholar
  258. 258.
    Torrente D, Avila MF, Cabezas R, Morales L, Gonzalez J, Samudio I, Barreto GE (2014) Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum Exp Toxicol 33(7):673–684.  https://doi.org/10.1177/0960327113509659 CrossRefPubMedGoogle Scholar
  259. 259.
    Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE (2018) Blockade of neuroglobin reduces protection of conditioned medium from human mesenchymal stem cells in human astrocyte model (T98G) under a scratch assay. Mol Neurobiol 55(3):2285–2300.  https://doi.org/10.1007/s12035-017-0481-y CrossRefPubMedGoogle Scholar
  260. 260.
    Baez-Jurado E, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Echeverria V, Aliev G, Barreto GE (2018) Conditioned medium of human adipose mesenchymal stem cells increases wound closure and protects human astrocytes following scratch assay in vitro. Mol Neurobiol 55(6):5377–5392.  https://doi.org/10.1007/s12035-017-0771-4 CrossRefPubMedGoogle Scholar
  261. 261.
    Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F, Li F, Liu X et al (2015) Paracrine factors secreted by MSCs promote astrocyte survival associated with GFAP downregulation after ischemic stroke via p38 MAPK and JNK. J Cell Physiol 230(10):2461–2475.  https://doi.org/10.1002/jcp.24981 CrossRefPubMedGoogle Scholar
  262. 262.
    Salgado AJ, Fraga JS, Mesquita AR, Neves NM, Reis RL, Sousa N (2010) Role of human umbilical cord mesenchymal progenitors conditioned media in neuronal/glial cell densities, viability, and proliferation. Stem Cells Dev 19(7):1067–1074.  https://doi.org/10.1089/scd.2009.0279 CrossRefPubMedGoogle Scholar
  263. 263.
    Teixeira FG, Carvalho MM, Neves-Carvalho A, Panchalingam KM, Behie LA, Pinto L, Sousa N, Salgado AJ (2015) Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev 11(2):288–297.  https://doi.org/10.1007/s12015-014-9576-2 CrossRefPubMedGoogle Scholar
  264. 264.
    Song M, Jue SS, Cho YA, Kim EC (2015) Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res 93(6):973–983.  https://doi.org/10.1002/jnr.23569 CrossRefPubMedGoogle Scholar
  265. 265.
    Anne Stetler R, Leak RK, Gao Y, Chen J (2013) The dynamics of the mitochondrial organelle as a potential therapeutic target. J Cereb Blood Flow Metab 33(1):22–32.  https://doi.org/10.1038/jcbfm.2012.158 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Nutrición y Bioquímica, Facultad de CienciasPontificia Universidad JaverianaBogotáColombia
  2. 2.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  3. 3.Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  4. 4.School of PharmacyMashhad University of Medical SciencesMashhadIran
  5. 5.King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Facultad de Ciencias de la SaludUniversidad San SebastianConcepciónChile
  7. 7.Research & Development ServiceBay Pines VA Healthcare SystemBay PinesUSA

Personalised recommendations